import colorcet as cc import numpy as np import skimage import torch from utils.transform_utils import inverse_normalize_w_resize # Define the colors to use for the attention maps colors = cc.glasbey_category10 class VisualizeAttentionMaps: def __init__(self, snapshot_dir="", save_resolution=(256, 256), alpha=0.5, bg_label=0, num_parts=15): """ Plot attention maps and optionally landmark centroids on images. :param snapshot_dir: Directory to save the visualization results :param save_resolution: Size of the images to save :param alpha: The transparency of the attention maps :param bg_label: The background label index in the attention maps :param num_parts: The number of parts in the attention maps """ self.save_resolution = save_resolution self.alpha = alpha self.bg_label = bg_label self.snapshot_dir = snapshot_dir self.resize_unnorm = inverse_normalize_w_resize(resize_resolution=self.save_resolution) self.num_parts = num_parts self.figs_size = (10, 10) @torch.no_grad() def show_maps(self, ims, maps): """ Plot images, attention maps and landmark centroids. Parameters ---------- ims: Tensor, [batch_size, 3, width_im, height_im] Input images on which to show the attention maps maps: Tensor, [batch_size, number of parts + 1, width_map, height_map] The attention maps to display """ ims = self.resize_unnorm(ims) ims = (ims.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8) map_argmax = torch.nn.functional.interpolate(maps.clone().detach(), size=self.save_resolution, mode='bilinear', align_corners=True).argmax(dim=1).cpu().numpy() # Select colors for parts which are present parts_present = np.unique(map_argmax).tolist() if self.bg_label in parts_present: parts_present.remove(self.bg_label) colors_present = [colors[i] for i in parts_present] curr_map = skimage.color.label2rgb(label=map_argmax[0], image=ims[0], colors=colors_present, bg_label=self.bg_label, alpha=self.alpha) return curr_map