Trial / app_27.py
anamargarida's picture
Update app_27.py
a612a43 verified
raw
history blame
22.4 kB
import streamlit as st
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModel
from huggingface_hub import login
import re
import copy
from modeling_st2 import ST2ModelV2, SignalDetector
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
login(token=hf_token)
# Load model & tokenizer once (cached for efficiency)
@st.cache_resource
def load_model():
config = AutoConfig.from_pretrained("roberta-large")
tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
class Args:
def __init__(self):
self.dropout = 0.1
self.signal_classification = True
self.pretrained_signal_detector = False
args = Args()
model = ST2ModelV2(args)
repo_id = "anamargarida/SpanExtractionWithSignalCls_2"
filename = "model.safetensors"
# Download the model file
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
# Load the model weights
state_dict = load_file(model_path)
model.load_state_dict(state_dict)
return tokenizer, model
# Load the model and tokenizer
tokenizer, model = load_model()
model.eval() # Set model to evaluation mode
def extract_arguments(text, tokenizer, model, beam_search=True):
class Args:
def __init__(self):
self.signal_classification = True
self.pretrained_signal_detector = False
args = Args()
inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
# Get tokenized words (for reconstruction later)
word_ids = inputs.word_ids()
with torch.no_grad():
outputs = model(**inputs)
# Extract logits
start_cause_logits = outputs["start_arg0_logits"][0]
end_cause_logits = outputs["end_arg0_logits"][0]
start_effect_logits = outputs["start_arg1_logits"][0]
end_effect_logits = outputs["end_arg1_logits"][0]
start_signal_logits = outputs["start_sig_logits"][0]
end_signal_logits = outputs["end_sig_logits"][0]
# Set the first and last token logits to a very low value to ignore them
start_cause_logits[0] = -1e-4
end_cause_logits[0] = -1e-4
start_effect_logits[0] = -1e-4
end_effect_logits[0] = -1e-4
start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
# Beam Search for position selection
if beam_search:
indices1, indices2, _, _, _ = model.beam_search_position_selector(
start_cause_logits=start_cause_logits,
end_cause_logits=end_cause_logits,
start_effect_logits=start_effect_logits,
end_effect_logits=end_effect_logits,
topk=5
)
start_cause1, end_cause1, start_effect1, end_effect1 = indices1
start_cause2, end_cause2, start_effect2, end_effect2 = indices2
else:
start_cause1 = start_cause_logits.argmax().item()
end_cause1 = end_cause_logits.argmax().item()
start_effect1 = start_effect_logits.argmax().item()
end_effect1 = end_effect_logits.argmax().item()
start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None
has_signal = 1
if args.signal_classification:
if not args.pretrained_signal_detector:
has_signal = outputs["signal_classification_logits"].argmax().item()
else:
has_signal = signal_detector.predict(text=batch["text"])
if has_signal:
start_signal_logits[0] = -1e-4
end_signal_logits[0] = -1e-4
start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
start_signal = start_signal_logits.argmax().item()
end_signal_logits[:start_signal] = -1e4
end_signal_logits[start_signal + 5:] = -1e4
end_signal = end_signal_logits.argmax().item()
if not has_signal:
start_signal, end_signal = None, None
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
token_ids = inputs["input_ids"][0]
offset_mapping = inputs["offset_mapping"][0].tolist()
for i, (token, word_id) in enumerate(zip(tokens, word_ids)):
st.write(f"Token {i}: {token}, Word ID: {word_id}")
st.write("Token & offset:")
for i, (token, offset) in enumerate(zip(tokens, offset_mapping)):
st.write(f"Token {i}: {token}, Offset: {offset}")
st.write("Token Positions, IDs, and Corresponding Tokens:")
for position, (token_id, token) in enumerate(zip(token_ids, tokens)):
st.write(f"Position: {position}, ID: {token_id}, Token: {token}")
st.write(f"Start Cause 1: {start_cause1}, End Cause: {end_cause1}")
st.write(f"Start Effect 1: {start_effect1}, End Cause: {end_effect1}")
st.write(f"Start Signal: {start_signal}, End Signal: {end_signal}")
def extract_span(start, end):
return tokenizer.convert_tokens_to_string(tokens[start:end+1]) if start is not None and end is not None else ""
cause1 = extract_span(start_cause1, end_cause1)
cause2 = extract_span(start_cause2, end_cause2)
effect1 = extract_span(start_effect1, end_effect1)
effect2 = extract_span(start_effect2, end_effect2)
if has_signal:
signal = extract_span(start_signal, end_signal)
if not has_signal:
signal = 'NA'
list1 = [start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal]
list2 = [start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal]
#return cause1, cause2, effect1, effect2, signal, list1, list2
#return start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal
# Find the first valid token in a multi-token word
def find_valid_start(position):
while position > 0 and word_ids[position] == word_ids[position - 1]:
position -= 1
return position
def find_valid_end(position):
while position < len(word_ids) - 1 and word_ids[position] == word_ids[position + 1]:
position += 1
return position
# Add the argument tags in the sentence directly
def add_tags(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
space_splitted_tokens = original_text.split(" ")
this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
def safe_insert(tag, position, start=True):
"""Safely insert a tag, checking for None values and index validity."""
if position is not None and word_ids[position] is not None:
word_index = word_ids[position]
# Ensure word_index is within range
if 0 <= word_index < len(this_space_splitted_tokens):
if start:
this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
else:
this_space_splitted_tokens[word_index] += tag
# Add argument tags safely
safe_insert('<ARG0>', start_cause, start=True)
safe_insert('</ARG0>', end_cause, start=False)
safe_insert('<ARG1>', start_effect, start=True)
safe_insert('</ARG1>', end_effect, start=False)
# Add signal tags safely (if signal exists)
if start_signal is not None and end_signal is not None:
safe_insert('<SIG0>', start_signal, start=True)
safe_insert('</SIG0>', end_signal, start=False)
# Join tokens back into a string
return ' '.join(this_space_splitted_tokens)
def add_tags_find(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
space_splitted_tokens = original_text.split(" ")
this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
def safe_insert(tag, position, start=True):
"""Safely insert a tag, checking for None values and index validity."""
if position is not None and word_ids[position] is not None:
word_index = word_ids[position]
# Ensure word_index is within range
if 0 <= word_index < len(this_space_splitted_tokens):
if start:
this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
else:
this_space_splitted_tokens[word_index] += tag
# Find valid start and end positions for words
start_cause = find_valid_start(start_cause)
end_cause = find_valid_end(end_cause)
start_effect = find_valid_start(start_effect)
end_effect = find_valid_end(end_effect)
if start_signal is not None:
start_signal = find_valid_start(start_signal)
end_signal = find_valid_end(end_signal)
# Adjust for punctuation shifts
if tokens[end_cause] in [".", ",", "-", ":", ";"]:
end_cause -= 1
if tokens[end_effect] in [".", ",", "-", ":", ";"]:
end_effect -= 1
# Add argument tags safely
safe_insert('<ARG0>', start_cause, start=True)
safe_insert('</ARG0>', end_cause, start=False)
safe_insert('<ARG1>', start_effect, start=True)
safe_insert('</ARG1>', end_effect, start=False)
# Add signal tags safely (if signal exists)
if start_signal is not None and end_signal is not None:
safe_insert('<SIG0>', start_signal, start=True)
safe_insert('</SIG0>', end_signal, start=False)
# Join tokens back into a string
return ' '.join(this_space_splitted_tokens)
def add_tags_offset(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
"""
Inserts tags into the original text based on token offsets.
Args:
text (str): The original input text.
tokenizer: The tokenizer used for tokenization.
start_cause (int): Start token index of the cause span.
end_cause (int): End token index of the cause span.
start_effect (int): Start token index of the effect span.
end_effect (int): End token index of the effect span.
start_signal (int, optional): Start token index of the signal span.
end_signal (int, optional): End token index of the signal span.
Returns:
str: The modified text with annotated spans.
"""
# Convert token-based indices to character-based indices
start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
# Insert tags into the original text
annotated_text = text[:start_cause_char] + "<ARG0>" + text[start_cause_char:end_cause_char] + "</ARG0>" + text[end_cause_char:start_effect_char] + "<ARG1>" + text[start_effect_char:end_effect_char] + "</ARG1>" + text[end_effect_char:]
# If signal span exists, insert signal tags
if start_signal is not None and end_signal is not None:
start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
annotated_text = (
annotated_text[:start_signal_char]
+ "<SIG0>" + annotated_text[start_signal_char:end_signal_char] + "</SIG0>"
+ annotated_text[end_signal_char:]
)
return annotated_text
def add_tags_offset_2(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
"""
Inserts tags into the original text based on token offsets.
Args:
text (str): The original input text.
offset_mapping (list of tuples): Maps token indices to character spans.
start_cause (int): Start token index of the cause span.
end_cause (int): End token index of the cause span.
start_effect (int): Start token index of the effect span.
end_effect (int): End token index of the effect span.
start_signal (int, optional): Start token index of the signal span.
end_signal (int, optional): End token index of the signal span.
Returns:
str: The modified text with annotated spans.
"""
# Convert token indices to character indices
spans = [
(offset_mapping[start_cause][0], offset_mapping[end_cause][1], "<ARG0>", "</ARG0>"),
(offset_mapping[start_effect][0], offset_mapping[end_effect][1], "<ARG1>", "</ARG1>")
]
# Include signal tags if available
if start_signal is not None and end_signal is not None:
spans.append((offset_mapping[start_signal][0], offset_mapping[end_signal][1], "<SIG0>", "</SIG0>"))
# Sort spans in reverse order based on start index (to avoid shifting issues)
spans.sort(reverse=True, key=lambda x: x[0])
# Insert tags
for start, end, open_tag, close_tag in spans:
text = text[:start] + open_tag + text[start:end] + close_tag + text[end:]
return text
import re
def add_tags_offset_3(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
"""
Inserts tags into the original text based on token offsets, ensuring correct nesting,
avoiding empty tags, preventing duplication, and handling punctuation placement.
Args:
text (str): The original input text.
offset_mapping (list of tuples): Maps token indices to character spans.
start_cause (int): Start token index of the cause span.
end_cause (int): End token index of the cause span.
start_effect (int): Start token index of the effect span.
end_effect (int): End token index of the effect span.
start_signal (int, optional): Start token index of the signal span.
end_signal (int, optional): End token index of the signal span.
Returns:
str: The modified text with correctly positioned annotated spans.
"""
# Convert token indices to character indices
spans = []
# Function to adjust start position to avoid punctuation issues
def adjust_start(text, start):
while start < len(text) and text[start] in {',', ' ', '.', ';', ':'}:
start += 1 # Move past punctuation
return start
# Ensure valid spans (avoid empty tags)
if start_cause is not None and end_cause is not None and start_cause < end_cause:
start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
spans.append((start_cause_char, end_cause_char, "<ARG0>", "</ARG0>"))
if start_effect is not None and end_effect is not None and start_effect < end_effect:
start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
start_effect_char = adjust_start(text, start_effect_char) # Skip punctuation
spans.append((start_effect_char, end_effect_char, "<ARG1>", "</ARG1>"))
if start_signal is not None and end_signal is not None and start_signal < end_signal:
start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
spans.append((start_signal_char, end_signal_char, "<SIG0>", "</SIG0>"))
# Sort spans in reverse order based on start index (to avoid shifting issues)
spans.sort(reverse=True, key=lambda x: x[0])
# Insert tags correctly
modified_text = text
inserted_positions = []
for start, end, open_tag, close_tag in spans:
# Adjust positions based on previous insertions
shift = sum(len(tag) for pos, tag in inserted_positions if pos <= start)
start += shift
end += shift
# Ensure valid start/end to prevent empty tags
if start < end:
modified_text = modified_text[:start] + open_tag + modified_text[start:end] + close_tag + modified_text[end:]
inserted_positions.append((start, open_tag))
inserted_positions.append((end + len(open_tag), close_tag))
return modified_text
tagged_sentence1 = add_tags_offset_3(input_text, start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal)
tagged_sentence2 = add_tags_offset_3(input_text, start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal)
return tagged_sentence1, tagged_sentence2
def mark_text_by_position(original_text, start_idx, end_idx, color):
"""Marks text in the original string based on character positions."""
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
return (
original_text[:start_idx]
+ f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
+ original_text[start_idx:end_idx]
+ "</mark>"
+ original_text[end_idx:]
)
return original_text # Return unchanged if indices are invalidt # Return unchanged text if no span is found
def mark_text_by_tokens(tokenizer, tokens, start_idx, end_idx, color):
"""Highlights a span in tokenized text using HTML."""
highlighted_tokens = copy.deepcopy(tokens) # Avoid modifying original tokens
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
highlighted_tokens[start_idx] = f"<span style='background-color:{color}; padding:2px; border-radius:4px;'>{highlighted_tokens[start_idx]}"
highlighted_tokens[end_idx] = f"{highlighted_tokens[end_idx]}</span>"
return tokenizer.convert_tokens_to_string(highlighted_tokens)
def mark_text_by_word_ids(original_text, token_ids, start_word_id, end_word_id, color):
"""Marks words in the original text based on word IDs from tokenized input."""
words = original_text.split() # Split text into words
if start_word_id is not None and end_word_id is not None and start_word_id <= end_word_id:
words[start_word_id] = f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>{words[start_word_id]}"
words[end_word_id] = f"{words[end_word_id]}</mark>"
return " ".join(words)
st.title("Causal Relation Extraction")
input_text = st.text_area("Enter your text here:", height=300)
beam_search = st.radio("Enable Beam Search?", ('No', 'Yes')) == 'Yes'
if st.button("Add Argument Tags"):
if input_text:
tagged_sentence1, tagged_sentence2 = extract_arguments(input_text, tokenizer, model, beam_search=True)
st.write("**Tagged Sentence_1:**")
st.write(tagged_sentence1)
st.write("**Tagged Sentence_2:**")
st.write(tagged_sentence2)
else:
st.warning("Please enter some text to analyze.")
if st.button("Extract"):
if input_text:
start_cause_id, end_cause_id, start_effect_id, end_effect_id, start_signal_id, end_signal_id = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
cause_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_cause_id, end_cause_id, "#FFD700") # Gold for cause
effect_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_effect_id, end_effect_id, "#90EE90") # Light green for effect
signal_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_signal_id, end_signal_id, "#FF6347") # Tomato red for signal
st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
else:
st.warning("Please enter some text before extracting.")
if st.button("Extract1"):
if input_text:
start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
# Convert text to tokenized format
tokenized_input = tokenizer.tokenize(input_text)
cause_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause1, end_cause1, "#FFD700") # Gold for cause
effect_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect1, end_effect1, "#90EE90") # Light green for effect
signal_text = mark_text_by_tokens(tokenizer, tokenized_input, start_signal, end_signal, "#FF6347") # Tomato red for signal
# Display first relation
st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
# Display second relation if beam search is enabled
if beam_search:
cause_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause2, end_cause2, "#FFD700")
effect_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect2, end_effect2, "#90EE90")
st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
else:
st.warning("Please enter some text before extracting.")