Spaces:
Sleeping
Sleeping
File size: 22,378 Bytes
2ce452b 06c192a 78b0615 2ce452b 0b626fe c55aca5 2ce452b 78b0615 2ce452b e988543 2ce452b 78b0615 2ce452b 78b0615 2ce452b fc259cf 2ce452b 238fa61 fbfeb5d 2ce452b 43bf776 c7b9f8a 2ce452b fbfeb5d 2ce452b 238fa61 b982777 48c7ceb 238fa61 48c7ceb 2ce452b 9b3ad4c 2ce452b c7b9f8a 2203049 9a65bb3 2203049 9a65bb3 2203049 b982777 341d2b6 ebb441e 341d2b6 ebb441e 341d2b6 b982777 2203049 9a65bb3 238fa61 7538da0 b43e4bd 238fa61 9a65bb3 341d2b6 a612a43 b43e4bd 2203049 b43e4bd 2203049 c7b9f8a 2203049 c7b9f8a 2ce452b 9eec2cd 2203049 9eec2cd 2203049 9eec2cd 2ce452b 2203049 d578e49 2203049 2ce452b c7b9f8a 2ce452b 9eec2cd 2ce452b 9eec2cd 2ce452b 9eec2cd 2ce452b 9eec2cd 2ce452b 9eec2cd 2203049 2ce452b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import streamlit as st
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModel
from huggingface_hub import login
import re
import copy
from modeling_st2 import ST2ModelV2, SignalDetector
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
login(token=hf_token)
# Load model & tokenizer once (cached for efficiency)
@st.cache_resource
def load_model():
config = AutoConfig.from_pretrained("roberta-large")
tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
class Args:
def __init__(self):
self.dropout = 0.1
self.signal_classification = True
self.pretrained_signal_detector = False
args = Args()
model = ST2ModelV2(args)
repo_id = "anamargarida/SpanExtractionWithSignalCls_2"
filename = "model.safetensors"
# Download the model file
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
# Load the model weights
state_dict = load_file(model_path)
model.load_state_dict(state_dict)
return tokenizer, model
# Load the model and tokenizer
tokenizer, model = load_model()
model.eval() # Set model to evaluation mode
def extract_arguments(text, tokenizer, model, beam_search=True):
class Args:
def __init__(self):
self.signal_classification = True
self.pretrained_signal_detector = False
args = Args()
inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
# Get tokenized words (for reconstruction later)
word_ids = inputs.word_ids()
with torch.no_grad():
outputs = model(**inputs)
# Extract logits
start_cause_logits = outputs["start_arg0_logits"][0]
end_cause_logits = outputs["end_arg0_logits"][0]
start_effect_logits = outputs["start_arg1_logits"][0]
end_effect_logits = outputs["end_arg1_logits"][0]
start_signal_logits = outputs["start_sig_logits"][0]
end_signal_logits = outputs["end_sig_logits"][0]
# Set the first and last token logits to a very low value to ignore them
start_cause_logits[0] = -1e-4
end_cause_logits[0] = -1e-4
start_effect_logits[0] = -1e-4
end_effect_logits[0] = -1e-4
start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
# Beam Search for position selection
if beam_search:
indices1, indices2, _, _, _ = model.beam_search_position_selector(
start_cause_logits=start_cause_logits,
end_cause_logits=end_cause_logits,
start_effect_logits=start_effect_logits,
end_effect_logits=end_effect_logits,
topk=5
)
start_cause1, end_cause1, start_effect1, end_effect1 = indices1
start_cause2, end_cause2, start_effect2, end_effect2 = indices2
else:
start_cause1 = start_cause_logits.argmax().item()
end_cause1 = end_cause_logits.argmax().item()
start_effect1 = start_effect_logits.argmax().item()
end_effect1 = end_effect_logits.argmax().item()
start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None
has_signal = 1
if args.signal_classification:
if not args.pretrained_signal_detector:
has_signal = outputs["signal_classification_logits"].argmax().item()
else:
has_signal = signal_detector.predict(text=batch["text"])
if has_signal:
start_signal_logits[0] = -1e-4
end_signal_logits[0] = -1e-4
start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
start_signal = start_signal_logits.argmax().item()
end_signal_logits[:start_signal] = -1e4
end_signal_logits[start_signal + 5:] = -1e4
end_signal = end_signal_logits.argmax().item()
if not has_signal:
start_signal, end_signal = None, None
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
token_ids = inputs["input_ids"][0]
offset_mapping = inputs["offset_mapping"][0].tolist()
for i, (token, word_id) in enumerate(zip(tokens, word_ids)):
st.write(f"Token {i}: {token}, Word ID: {word_id}")
st.write("Token & offset:")
for i, (token, offset) in enumerate(zip(tokens, offset_mapping)):
st.write(f"Token {i}: {token}, Offset: {offset}")
st.write("Token Positions, IDs, and Corresponding Tokens:")
for position, (token_id, token) in enumerate(zip(token_ids, tokens)):
st.write(f"Position: {position}, ID: {token_id}, Token: {token}")
st.write(f"Start Cause 1: {start_cause1}, End Cause: {end_cause1}")
st.write(f"Start Effect 1: {start_effect1}, End Cause: {end_effect1}")
st.write(f"Start Signal: {start_signal}, End Signal: {end_signal}")
def extract_span(start, end):
return tokenizer.convert_tokens_to_string(tokens[start:end+1]) if start is not None and end is not None else ""
cause1 = extract_span(start_cause1, end_cause1)
cause2 = extract_span(start_cause2, end_cause2)
effect1 = extract_span(start_effect1, end_effect1)
effect2 = extract_span(start_effect2, end_effect2)
if has_signal:
signal = extract_span(start_signal, end_signal)
if not has_signal:
signal = 'NA'
list1 = [start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal]
list2 = [start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal]
#return cause1, cause2, effect1, effect2, signal, list1, list2
#return start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal
# Find the first valid token in a multi-token word
def find_valid_start(position):
while position > 0 and word_ids[position] == word_ids[position - 1]:
position -= 1
return position
def find_valid_end(position):
while position < len(word_ids) - 1 and word_ids[position] == word_ids[position + 1]:
position += 1
return position
# Add the argument tags in the sentence directly
def add_tags(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
space_splitted_tokens = original_text.split(" ")
this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
def safe_insert(tag, position, start=True):
"""Safely insert a tag, checking for None values and index validity."""
if position is not None and word_ids[position] is not None:
word_index = word_ids[position]
# Ensure word_index is within range
if 0 <= word_index < len(this_space_splitted_tokens):
if start:
this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
else:
this_space_splitted_tokens[word_index] += tag
# Add argument tags safely
safe_insert('<ARG0>', start_cause, start=True)
safe_insert('</ARG0>', end_cause, start=False)
safe_insert('<ARG1>', start_effect, start=True)
safe_insert('</ARG1>', end_effect, start=False)
# Add signal tags safely (if signal exists)
if start_signal is not None and end_signal is not None:
safe_insert('<SIG0>', start_signal, start=True)
safe_insert('</SIG0>', end_signal, start=False)
# Join tokens back into a string
return ' '.join(this_space_splitted_tokens)
def add_tags_find(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
space_splitted_tokens = original_text.split(" ")
this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
def safe_insert(tag, position, start=True):
"""Safely insert a tag, checking for None values and index validity."""
if position is not None and word_ids[position] is not None:
word_index = word_ids[position]
# Ensure word_index is within range
if 0 <= word_index < len(this_space_splitted_tokens):
if start:
this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
else:
this_space_splitted_tokens[word_index] += tag
# Find valid start and end positions for words
start_cause = find_valid_start(start_cause)
end_cause = find_valid_end(end_cause)
start_effect = find_valid_start(start_effect)
end_effect = find_valid_end(end_effect)
if start_signal is not None:
start_signal = find_valid_start(start_signal)
end_signal = find_valid_end(end_signal)
# Adjust for punctuation shifts
if tokens[end_cause] in [".", ",", "-", ":", ";"]:
end_cause -= 1
if tokens[end_effect] in [".", ",", "-", ":", ";"]:
end_effect -= 1
# Add argument tags safely
safe_insert('<ARG0>', start_cause, start=True)
safe_insert('</ARG0>', end_cause, start=False)
safe_insert('<ARG1>', start_effect, start=True)
safe_insert('</ARG1>', end_effect, start=False)
# Add signal tags safely (if signal exists)
if start_signal is not None and end_signal is not None:
safe_insert('<SIG0>', start_signal, start=True)
safe_insert('</SIG0>', end_signal, start=False)
# Join tokens back into a string
return ' '.join(this_space_splitted_tokens)
def add_tags_offset(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
"""
Inserts tags into the original text based on token offsets.
Args:
text (str): The original input text.
tokenizer: The tokenizer used for tokenization.
start_cause (int): Start token index of the cause span.
end_cause (int): End token index of the cause span.
start_effect (int): Start token index of the effect span.
end_effect (int): End token index of the effect span.
start_signal (int, optional): Start token index of the signal span.
end_signal (int, optional): End token index of the signal span.
Returns:
str: The modified text with annotated spans.
"""
# Convert token-based indices to character-based indices
start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
# Insert tags into the original text
annotated_text = text[:start_cause_char] + "<ARG0>" + text[start_cause_char:end_cause_char] + "</ARG0>" + text[end_cause_char:start_effect_char] + "<ARG1>" + text[start_effect_char:end_effect_char] + "</ARG1>" + text[end_effect_char:]
# If signal span exists, insert signal tags
if start_signal is not None and end_signal is not None:
start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
annotated_text = (
annotated_text[:start_signal_char]
+ "<SIG0>" + annotated_text[start_signal_char:end_signal_char] + "</SIG0>"
+ annotated_text[end_signal_char:]
)
return annotated_text
def add_tags_offset_2(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
"""
Inserts tags into the original text based on token offsets.
Args:
text (str): The original input text.
offset_mapping (list of tuples): Maps token indices to character spans.
start_cause (int): Start token index of the cause span.
end_cause (int): End token index of the cause span.
start_effect (int): Start token index of the effect span.
end_effect (int): End token index of the effect span.
start_signal (int, optional): Start token index of the signal span.
end_signal (int, optional): End token index of the signal span.
Returns:
str: The modified text with annotated spans.
"""
# Convert token indices to character indices
spans = [
(offset_mapping[start_cause][0], offset_mapping[end_cause][1], "<ARG0>", "</ARG0>"),
(offset_mapping[start_effect][0], offset_mapping[end_effect][1], "<ARG1>", "</ARG1>")
]
# Include signal tags if available
if start_signal is not None and end_signal is not None:
spans.append((offset_mapping[start_signal][0], offset_mapping[end_signal][1], "<SIG0>", "</SIG0>"))
# Sort spans in reverse order based on start index (to avoid shifting issues)
spans.sort(reverse=True, key=lambda x: x[0])
# Insert tags
for start, end, open_tag, close_tag in spans:
text = text[:start] + open_tag + text[start:end] + close_tag + text[end:]
return text
import re
def add_tags_offset_3(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
"""
Inserts tags into the original text based on token offsets, ensuring correct nesting,
avoiding empty tags, preventing duplication, and handling punctuation placement.
Args:
text (str): The original input text.
offset_mapping (list of tuples): Maps token indices to character spans.
start_cause (int): Start token index of the cause span.
end_cause (int): End token index of the cause span.
start_effect (int): Start token index of the effect span.
end_effect (int): End token index of the effect span.
start_signal (int, optional): Start token index of the signal span.
end_signal (int, optional): End token index of the signal span.
Returns:
str: The modified text with correctly positioned annotated spans.
"""
# Convert token indices to character indices
spans = []
# Function to adjust start position to avoid punctuation issues
def adjust_start(text, start):
while start < len(text) and text[start] in {',', ' ', '.', ';', ':'}:
start += 1 # Move past punctuation
return start
# Ensure valid spans (avoid empty tags)
if start_cause is not None and end_cause is not None and start_cause < end_cause:
start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
spans.append((start_cause_char, end_cause_char, "<ARG0>", "</ARG0>"))
if start_effect is not None and end_effect is not None and start_effect < end_effect:
start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
start_effect_char = adjust_start(text, start_effect_char) # Skip punctuation
spans.append((start_effect_char, end_effect_char, "<ARG1>", "</ARG1>"))
if start_signal is not None and end_signal is not None and start_signal < end_signal:
start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
spans.append((start_signal_char, end_signal_char, "<SIG0>", "</SIG0>"))
# Sort spans in reverse order based on start index (to avoid shifting issues)
spans.sort(reverse=True, key=lambda x: x[0])
# Insert tags correctly
modified_text = text
inserted_positions = []
for start, end, open_tag, close_tag in spans:
# Adjust positions based on previous insertions
shift = sum(len(tag) for pos, tag in inserted_positions if pos <= start)
start += shift
end += shift
# Ensure valid start/end to prevent empty tags
if start < end:
modified_text = modified_text[:start] + open_tag + modified_text[start:end] + close_tag + modified_text[end:]
inserted_positions.append((start, open_tag))
inserted_positions.append((end + len(open_tag), close_tag))
return modified_text
tagged_sentence1 = add_tags_offset_3(input_text, start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal)
tagged_sentence2 = add_tags_offset_3(input_text, start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal)
return tagged_sentence1, tagged_sentence2
def mark_text_by_position(original_text, start_idx, end_idx, color):
"""Marks text in the original string based on character positions."""
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
return (
original_text[:start_idx]
+ f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
+ original_text[start_idx:end_idx]
+ "</mark>"
+ original_text[end_idx:]
)
return original_text # Return unchanged if indices are invalidt # Return unchanged text if no span is found
def mark_text_by_tokens(tokenizer, tokens, start_idx, end_idx, color):
"""Highlights a span in tokenized text using HTML."""
highlighted_tokens = copy.deepcopy(tokens) # Avoid modifying original tokens
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
highlighted_tokens[start_idx] = f"<span style='background-color:{color}; padding:2px; border-radius:4px;'>{highlighted_tokens[start_idx]}"
highlighted_tokens[end_idx] = f"{highlighted_tokens[end_idx]}</span>"
return tokenizer.convert_tokens_to_string(highlighted_tokens)
def mark_text_by_word_ids(original_text, token_ids, start_word_id, end_word_id, color):
"""Marks words in the original text based on word IDs from tokenized input."""
words = original_text.split() # Split text into words
if start_word_id is not None and end_word_id is not None and start_word_id <= end_word_id:
words[start_word_id] = f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>{words[start_word_id]}"
words[end_word_id] = f"{words[end_word_id]}</mark>"
return " ".join(words)
st.title("Causal Relation Extraction")
input_text = st.text_area("Enter your text here:", height=300)
beam_search = st.radio("Enable Beam Search?", ('No', 'Yes')) == 'Yes'
if st.button("Add Argument Tags"):
if input_text:
tagged_sentence1, tagged_sentence2 = extract_arguments(input_text, tokenizer, model, beam_search=True)
st.write("**Tagged Sentence_1:**")
st.write(tagged_sentence1)
st.write("**Tagged Sentence_2:**")
st.write(tagged_sentence2)
else:
st.warning("Please enter some text to analyze.")
if st.button("Extract"):
if input_text:
start_cause_id, end_cause_id, start_effect_id, end_effect_id, start_signal_id, end_signal_id = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
cause_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_cause_id, end_cause_id, "#FFD700") # Gold for cause
effect_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_effect_id, end_effect_id, "#90EE90") # Light green for effect
signal_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_signal_id, end_signal_id, "#FF6347") # Tomato red for signal
st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
else:
st.warning("Please enter some text before extracting.")
if st.button("Extract1"):
if input_text:
start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
# Convert text to tokenized format
tokenized_input = tokenizer.tokenize(input_text)
cause_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause1, end_cause1, "#FFD700") # Gold for cause
effect_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect1, end_effect1, "#90EE90") # Light green for effect
signal_text = mark_text_by_tokens(tokenizer, tokenized_input, start_signal, end_signal, "#FF6347") # Tomato red for signal
# Display first relation
st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
# Display second relation if beam search is enabled
if beam_search:
cause_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause2, end_cause2, "#FFD700")
effect_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect2, end_effect2, "#90EE90")
st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
else:
st.warning("Please enter some text before extracting.") |