File size: 22,378 Bytes
2ce452b
 
 
 
 
 
06c192a
78b0615
 
2ce452b
0b626fe
c55aca5
2ce452b
 
 
 
 
 
 
78b0615
 
 
2ce452b
 
 
e988543
2ce452b
 
 
 
 
 
78b0615
 
 
 
 
 
 
 
 
 
 
2ce452b
78b0615
2ce452b
 
 
 
 
 
fc259cf
2ce452b
 
 
 
 
 
 
 
 
 
238fa61
 
fbfeb5d
 
2ce452b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43bf776
c7b9f8a
2ce452b
fbfeb5d
2ce452b
 
238fa61
b982777
48c7ceb
 
238fa61
 
 
 
48c7ceb
2ce452b
9b3ad4c
 
 
2ce452b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b9f8a
2203049
 
9a65bb3
 
 
 
 
2203049
9a65bb3
 
 
 
 
2203049
 
b982777
 
341d2b6
 
 
ebb441e
341d2b6
ebb441e
 
 
 
 
 
 
 
 
341d2b6
 
 
 
 
 
 
 
 
 
 
 
b982777
2203049
9a65bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238fa61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7538da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43e4bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238fa61
9a65bb3
341d2b6
a612a43
b43e4bd
 
2203049
 
b43e4bd
2203049
 
c7b9f8a
 
 
2203049
c7b9f8a
 
 
 
 
 
 
 
2ce452b
9eec2cd
 
 
2203049
9eec2cd
 
 
 
2203049
 
 
 
 
 
 
 
 
 
 
9eec2cd
2ce452b
 
 
 
2203049
d578e49
2203049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce452b
 
 
c7b9f8a
2ce452b
9eec2cd
 
 
 
 
 
2ce452b
9eec2cd
 
 
 
 
2ce452b
9eec2cd
2ce452b
9eec2cd
 
2ce452b
9eec2cd
 
 
2203049
2ce452b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import streamlit as st
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModel
from huggingface_hub import login
import re
import copy
from modeling_st2 import ST2ModelV2, SignalDetector
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

hf_token = st.secrets["HUGGINGFACE_TOKEN"]
login(token=hf_token)



# Load model & tokenizer once (cached for efficiency)
@st.cache_resource
def load_model():
    
    config = AutoConfig.from_pretrained("roberta-large")

    tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
    
    class Args:
        def __init__(self):
            
            self.dropout = 0.1
            self.signal_classification = True
            self.pretrained_signal_detector = False

    args = Args()

    model = ST2ModelV2(args)


    repo_id = "anamargarida/SpanExtractionWithSignalCls_2"  
    filename = "model.safetensors"  

    # Download the model file
    model_path = hf_hub_download(repo_id=repo_id, filename=filename)

    # Load the model weights
    state_dict = load_file(model_path)

    model.load_state_dict(state_dict)
    
    return tokenizer, model

# Load the model and tokenizer
tokenizer, model = load_model()



model.eval()  # Set model to evaluation mode
def extract_arguments(text, tokenizer, model, beam_search=True):
     
    class Args:
        def __init__(self):
            self.signal_classification = True
            self.pretrained_signal_detector = False
        
    args = Args()
    inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
    
    # Get tokenized words (for reconstruction later)
    word_ids = inputs.word_ids()
    
    with torch.no_grad():
        outputs = model(**inputs)


    # Extract logits
    start_cause_logits = outputs["start_arg0_logits"][0]
    end_cause_logits = outputs["end_arg0_logits"][0]
    start_effect_logits = outputs["start_arg1_logits"][0]
    end_effect_logits = outputs["end_arg1_logits"][0]
    start_signal_logits = outputs["start_sig_logits"][0]
    end_signal_logits = outputs["end_sig_logits"][0]


    # Set the first and last token logits to a very low value to ignore them
    start_cause_logits[0] = -1e-4
    end_cause_logits[0] = -1e-4
    start_effect_logits[0] = -1e-4
    end_effect_logits[0] = -1e-4
    start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4

    
    # Beam Search for position selection
    if beam_search:
        indices1, indices2, _, _, _ = model.beam_search_position_selector(
            start_cause_logits=start_cause_logits,
            end_cause_logits=end_cause_logits,
            start_effect_logits=start_effect_logits,
            end_effect_logits=end_effect_logits,
            topk=5
        )
        start_cause1, end_cause1, start_effect1, end_effect1 = indices1
        start_cause2, end_cause2, start_effect2, end_effect2 = indices2
    else:
        start_cause1 = start_cause_logits.argmax().item()
        end_cause1 = end_cause_logits.argmax().item()
        start_effect1 = start_effect_logits.argmax().item()
        end_effect1 = end_effect_logits.argmax().item()

        start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None

    
    has_signal = 1
    if args.signal_classification:
        if not args.pretrained_signal_detector:
            has_signal = outputs["signal_classification_logits"].argmax().item()
        else:
            has_signal = signal_detector.predict(text=batch["text"])

    if has_signal:
        start_signal_logits[0] = -1e-4
        end_signal_logits[0] = -1e-4
    
        start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
        end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
       
        start_signal = start_signal_logits.argmax().item()
        end_signal_logits[:start_signal] = -1e4
        end_signal_logits[start_signal + 5:] = -1e4
        end_signal = end_signal_logits.argmax().item()

    if not has_signal:
        start_signal, end_signal = None, None
        
    
    tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    token_ids = inputs["input_ids"][0]
    offset_mapping = inputs["offset_mapping"][0].tolist()
    
    for i, (token, word_id) in enumerate(zip(tokens, word_ids)):
        st.write(f"Token {i}: {token}, Word ID: {word_id}")

    st.write("Token & offset:")
    for i, (token, offset) in enumerate(zip(tokens, offset_mapping)):
        st.write(f"Token {i}: {token}, Offset: {offset}")
    

    st.write("Token Positions, IDs, and Corresponding Tokens:")
    for position, (token_id, token) in enumerate(zip(token_ids, tokens)):
        st.write(f"Position: {position}, ID: {token_id}, Token: {token}")

    st.write(f"Start Cause 1: {start_cause1}, End Cause: {end_cause1}")
    st.write(f"Start Effect 1: {start_effect1}, End Cause: {end_effect1}")
    st.write(f"Start Signal: {start_signal}, End Signal: {end_signal}")

    def extract_span(start, end):
        return tokenizer.convert_tokens_to_string(tokens[start:end+1]) if start is not None and end is not None else ""

    cause1 = extract_span(start_cause1, end_cause1)
    cause2 = extract_span(start_cause2, end_cause2)
    effect1 = extract_span(start_effect1, end_effect1)
    effect2 = extract_span(start_effect2, end_effect2)
    if has_signal:
        signal = extract_span(start_signal, end_signal)
    if not has_signal:
        signal = 'NA'
    list1 = [start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal]
    list2 = [start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal]
    #return cause1, cause2, effect1, effect2, signal, list1, list2
    #return start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal

    # Find the first valid token in a multi-token word
    def find_valid_start(position):
        while position > 0 and word_ids[position] == word_ids[position - 1]:
            position -= 1
        return position
    
    def find_valid_end(position):
        while position < len(word_ids) - 1 and word_ids[position] == word_ids[position + 1]:
            position += 1
        return position


    # Add the argument tags in the sentence directly
    def add_tags(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
        space_splitted_tokens = original_text.split(" ")
        this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
    
        def safe_insert(tag, position, start=True):
            """Safely insert a tag, checking for None values and index validity."""
            if position is not None and word_ids[position] is not None:
                word_index = word_ids[position]
                
                # Ensure word_index is within range
                if 0 <= word_index < len(this_space_splitted_tokens):
                    if start:
                        this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
                    else:
                        this_space_splitted_tokens[word_index] += tag
            
        # Add argument tags safely
        safe_insert('<ARG0>', start_cause, start=True)
        safe_insert('</ARG0>', end_cause, start=False)
        safe_insert('<ARG1>', start_effect, start=True)
        safe_insert('</ARG1>', end_effect, start=False)
    
        # Add signal tags safely (if signal exists)
        if start_signal is not None and end_signal is not None:
            safe_insert('<SIG0>', start_signal, start=True)
            safe_insert('</SIG0>', end_signal, start=False)
    
        # Join tokens back into a string
        return ' '.join(this_space_splitted_tokens)

    def add_tags_find(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
        space_splitted_tokens = original_text.split(" ")
        this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
    
        def safe_insert(tag, position, start=True):
            """Safely insert a tag, checking for None values and index validity."""
            if position is not None and word_ids[position] is not None:
                word_index = word_ids[position]
    
                # Ensure word_index is within range
                if 0 <= word_index < len(this_space_splitted_tokens):
                    if start:
                        this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
                    else:
                        this_space_splitted_tokens[word_index] += tag
    
        # Find valid start and end positions for words
        start_cause = find_valid_start(start_cause)
        end_cause = find_valid_end(end_cause)
        start_effect = find_valid_start(start_effect)
        end_effect = find_valid_end(end_effect)
        if start_signal is not None:
            start_signal = find_valid_start(start_signal)
            end_signal = find_valid_end(end_signal)
    
        # Adjust for punctuation shifts
        if tokens[end_cause] in [".", ",", "-", ":", ";"]:
            end_cause -= 1
        if tokens[end_effect] in [".", ",", "-", ":", ";"]:
            end_effect -= 1
    
        # Add argument tags safely
        safe_insert('<ARG0>', start_cause, start=True)
        safe_insert('</ARG0>', end_cause, start=False)
        safe_insert('<ARG1>', start_effect, start=True)
        safe_insert('</ARG1>', end_effect, start=False)
    
        # Add signal tags safely (if signal exists)
        if start_signal is not None and end_signal is not None:
            safe_insert('<SIG0>', start_signal, start=True)
            safe_insert('</SIG0>', end_signal, start=False)
    
        # Join tokens back into a string
        return ' '.join(this_space_splitted_tokens)

    def add_tags_offset(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
        """
        Inserts tags into the original text based on token offsets.
        
        Args:
            text (str): The original input text.
            tokenizer: The tokenizer used for tokenization.
            start_cause (int): Start token index of the cause span.
            end_cause (int): End token index of the cause span.
            start_effect (int): Start token index of the effect span.
            end_effect (int): End token index of the effect span.
            start_signal (int, optional): Start token index of the signal span.
            end_signal (int, optional): End token index of the signal span.
    
        Returns:
            str: The modified text with annotated spans.
        """
    
        
    
        # Convert token-based indices to character-based indices
        start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
        start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
    
        # Insert tags into the original text
        annotated_text = text[:start_cause_char] + "<ARG0>" + text[start_cause_char:end_cause_char] + "</ARG0>" + text[end_cause_char:start_effect_char] + "<ARG1>" + text[start_effect_char:end_effect_char] + "</ARG1>" + text[end_effect_char:]
    
        # If signal span exists, insert signal tags
        if start_signal is not None and end_signal is not None:
            start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
            annotated_text = (
                annotated_text[:start_signal_char]
                + "<SIG0>" + annotated_text[start_signal_char:end_signal_char] + "</SIG0>"
                + annotated_text[end_signal_char:]
            )
    
        return annotated_text

    def add_tags_offset_2(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
        """
        Inserts tags into the original text based on token offsets.
    
        Args:
            text (str): The original input text.
            offset_mapping (list of tuples): Maps token indices to character spans.
            start_cause (int): Start token index of the cause span.
            end_cause (int): End token index of the cause span.
            start_effect (int): Start token index of the effect span.
            end_effect (int): End token index of the effect span.
            start_signal (int, optional): Start token index of the signal span.
            end_signal (int, optional): End token index of the signal span.
    
        Returns:
            str: The modified text with annotated spans.
        """
    
        # Convert token indices to character indices
        spans = [
            (offset_mapping[start_cause][0], offset_mapping[end_cause][1], "<ARG0>", "</ARG0>"),
            (offset_mapping[start_effect][0], offset_mapping[end_effect][1], "<ARG1>", "</ARG1>")
        ]
    
        # Include signal tags if available
        if start_signal is not None and end_signal is not None:
            spans.append((offset_mapping[start_signal][0], offset_mapping[end_signal][1], "<SIG0>", "</SIG0>"))
    
        # Sort spans in reverse order based on start index (to avoid shifting issues)
        spans.sort(reverse=True, key=lambda x: x[0])
    
        # Insert tags
        for start, end, open_tag, close_tag in spans:
            text = text[:start] + open_tag + text[start:end] + close_tag + text[end:]
    
        return text

    import re

    def add_tags_offset_3(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
        """
        Inserts tags into the original text based on token offsets, ensuring correct nesting,
        avoiding empty tags, preventing duplication, and handling punctuation placement.
    
        Args:
            text (str): The original input text.
            offset_mapping (list of tuples): Maps token indices to character spans.
            start_cause (int): Start token index of the cause span.
            end_cause (int): End token index of the cause span.
            start_effect (int): Start token index of the effect span.
            end_effect (int): End token index of the effect span.
            start_signal (int, optional): Start token index of the signal span.
            end_signal (int, optional): End token index of the signal span.
    
        Returns:
            str: The modified text with correctly positioned annotated spans.
        """
    
        # Convert token indices to character indices
        spans = []
    
        # Function to adjust start position to avoid punctuation issues
        def adjust_start(text, start):
            while start < len(text) and text[start] in {',', ' ', '.', ';', ':'}:
                start += 1  # Move past punctuation
            return start
    
        # Ensure valid spans (avoid empty tags)
        if start_cause is not None and end_cause is not None and start_cause < end_cause:
            start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
            spans.append((start_cause_char, end_cause_char, "<ARG0>", "</ARG0>"))
    
        if start_effect is not None and end_effect is not None and start_effect < end_effect:
            start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
            start_effect_char = adjust_start(text, start_effect_char)  # Skip punctuation
            spans.append((start_effect_char, end_effect_char, "<ARG1>", "</ARG1>"))
    
        if start_signal is not None and end_signal is not None and start_signal < end_signal:
            start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
            spans.append((start_signal_char, end_signal_char, "<SIG0>", "</SIG0>"))
    
        # Sort spans in reverse order based on start index (to avoid shifting issues)
        spans.sort(reverse=True, key=lambda x: x[0])
    
        # Insert tags correctly
        modified_text = text
        inserted_positions = []
    
        for start, end, open_tag, close_tag in spans:
            # Adjust positions based on previous insertions
            shift = sum(len(tag) for pos, tag in inserted_positions if pos <= start)
            start += shift
            end += shift
    
            # Ensure valid start/end to prevent empty tags
            if start < end:
                modified_text = modified_text[:start] + open_tag + modified_text[start:end] + close_tag + modified_text[end:]
                inserted_positions.append((start, open_tag))
                inserted_positions.append((end + len(open_tag), close_tag))
    
        return modified_text



    
    tagged_sentence1 = add_tags_offset_3(input_text, start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal)
    tagged_sentence2 = add_tags_offset_3(input_text, start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal)
    return tagged_sentence1, tagged_sentence2

    



def mark_text_by_position(original_text, start_idx, end_idx, color):
    """Marks text in the original string based on character positions."""
    if start_idx is not None and end_idx is not None and start_idx <= end_idx:
        return (
            original_text[:start_idx]
            + f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
            + original_text[start_idx:end_idx]
            + "</mark>"
            + original_text[end_idx:]
        )
    return original_text  # Return unchanged if indices are invalidt  # Return unchanged text if no span is found

def mark_text_by_tokens(tokenizer, tokens, start_idx, end_idx, color):
    """Highlights a span in tokenized text using HTML."""
    highlighted_tokens = copy.deepcopy(tokens)  # Avoid modifying original tokens
    if start_idx is not None and end_idx is not None and start_idx <= end_idx:
        highlighted_tokens[start_idx] = f"<span style='background-color:{color}; padding:2px; border-radius:4px;'>{highlighted_tokens[start_idx]}"
        highlighted_tokens[end_idx] = f"{highlighted_tokens[end_idx]}</span>"
    return tokenizer.convert_tokens_to_string(highlighted_tokens)

def mark_text_by_word_ids(original_text, token_ids, start_word_id, end_word_id, color):
    """Marks words in the original text based on word IDs from tokenized input."""
    words = original_text.split()  # Split text into words
    if start_word_id is not None and end_word_id is not None and start_word_id <= end_word_id:
        words[start_word_id] = f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>{words[start_word_id]}"
        words[end_word_id] = f"{words[end_word_id]}</mark>"
    
    return " ".join(words)




st.title("Causal Relation Extraction")
input_text = st.text_area("Enter your text here:", height=300)
beam_search = st.radio("Enable Beam Search?", ('No', 'Yes')) == 'Yes'

if st.button("Add Argument Tags"):
    if input_text:
        tagged_sentence1, tagged_sentence2 = extract_arguments(input_text, tokenizer, model, beam_search=True)

        st.write("**Tagged Sentence_1:**")
        st.write(tagged_sentence1)
        st.write("**Tagged Sentence_2:**")
        st.write(tagged_sentence2)
    else:
        st.warning("Please enter some text to analyze.")
    

if st.button("Extract"):
    if input_text:
        start_cause_id, end_cause_id, start_effect_id, end_effect_id, start_signal_id, end_signal_id = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)

        cause_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_cause_id, end_cause_id, "#FFD700")  # Gold for cause
        effect_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_effect_id, end_effect_id, "#90EE90")  # Light green for effect
        signal_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_signal_id, end_signal_id, "#FF6347")  # Tomato red for signal

        st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
        st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
        st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
    else:
        st.warning("Please enter some text before extracting.")




if st.button("Extract1"):
    if input_text:
        start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)

        # Convert text to tokenized format
        tokenized_input = tokenizer.tokenize(input_text)
        
        cause_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause1, end_cause1, "#FFD700")  # Gold for cause
        effect_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect1, end_effect1, "#90EE90")  # Light green for effect
        signal_text = mark_text_by_tokens(tokenizer, tokenized_input, start_signal, end_signal, "#FF6347")  # Tomato red for signal

        # Display first relation
        st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
        st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
        st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
        st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)

        # Display second relation if beam search is enabled
        if beam_search:
            cause_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause2, end_cause2, "#FFD700")
            effect_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect2, end_effect2, "#90EE90")

            st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
            st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
            st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
            st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
    else:
        st.warning("Please enter some text before extracting.")