File size: 12,347 Bytes
f26658a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2dc111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26658a
 
 
 
a2dc111
 
 
f26658a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import streamlit as st
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModel
from huggingface_hub import login
import re
import copy
from modeling_st2 import ST2ModelV2, SignalDetector
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

hf_token = st.secrets["HUGGINGFACE_TOKEN"]
login(token=hf_token)


# Load model & tokenizer once (cached for efficiency)
@st.cache_resource
def load_model():
    
    config = AutoConfig.from_pretrained("roberta-large")

    tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
    
    class Args:
        def __init__(self):
            
            self.dropout = 0.1
            self.signal_classification = True
            self.pretrained_signal_detector = False

    args = Args()

    model = ST2ModelV2(args)


    repo_id = "anamargarida/SpanExtractionWithSignalCls_2"  
    filename = "model.safetensors"  

    # Download the model file
    model_path = hf_hub_download(repo_id=repo_id, filename=filename)

    # Load the model weights
    state_dict = load_file(model_path)

    model.load_state_dict(state_dict)
    
    return tokenizer, model

# Load the model and tokenizer
tokenizer, model = load_model()

model.eval()  # Set model to evaluation mode
def extract_arguments(text, tokenizer, model, beam_search=True):
     
    class Args:
        def __init__(self):
            self.signal_classification = True
            self.pretrained_signal_detector = False
        
    args = Args()
    inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
    
    # Get tokenized words (for reconstruction later)
    word_ids = inputs.word_ids()
    
    with torch.no_grad():
        outputs = model(**inputs)


    # Extract logits
    start_cause_logits = outputs["start_arg0_logits"][0]
    end_cause_logits = outputs["end_arg0_logits"][0]
    start_effect_logits = outputs["start_arg1_logits"][0]
    end_effect_logits = outputs["end_arg1_logits"][0]
    start_signal_logits = outputs["start_sig_logits"][0]
    end_signal_logits = outputs["end_sig_logits"][0]


    # Set the first and last token logits to a very low value to ignore them
    start_cause_logits[0] = -1e-4
    end_cause_logits[0] = -1e-4
    start_effect_logits[0] = -1e-4
    end_effect_logits[0] = -1e-4
    start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4

    
    # Beam Search for position selection
    if beam_search:
        indices1, indices2, _, _, _ = model.beam_search_position_selector(
            start_cause_logits=start_cause_logits,
            end_cause_logits=end_cause_logits,
            start_effect_logits=start_effect_logits,
            end_effect_logits=end_effect_logits,
            topk=5
        )
        start_cause1, end_cause1, start_effect1, end_effect1 = indices1
        start_cause2, end_cause2, start_effect2, end_effect2 = indices2
    else:
        start_cause1 = start_cause_logits.argmax().item()
        end_cause1 = end_cause_logits.argmax().item()
        start_effect1 = start_effect_logits.argmax().item()
        end_effect1 = end_effect_logits.argmax().item()

        start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None

    
    has_signal = 1
    if args.signal_classification:
        if not args.pretrained_signal_detector:
            has_signal = outputs["signal_classification_logits"].argmax().item()
        else:
            has_signal = signal_detector.predict(text=batch["text"])

    if has_signal:
        start_signal_logits[0] = -1e-4
        end_signal_logits[0] = -1e-4
    
        start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
        end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
       
        start_signal = start_signal_logits.argmax().item()
        end_signal_logits[:start_signal] = -1e4
        end_signal_logits[start_signal + 5:] = -1e4
        end_signal = end_signal_logits.argmax().item()

    if not has_signal:
        start_signal, end_signal = None, None
        
    
    tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    token_ids = inputs["input_ids"][0]
    offset_mapping = inputs["offset_mapping"][0].tolist()
    
    for i, (token, word_id) in enumerate(zip(tokens, word_ids)):
        st.write(f"Token {i}: {token}, Word ID: {word_id}")

    st.write("Token & offset:")
    for i, (token, offset) in enumerate(zip(tokens, offset_mapping)):
        st.write(f"Token {i}: {token}, Offset: {offset}")
    

    st.write("Token Positions, IDs, and Corresponding Tokens:")
    for position, (token_id, token) in enumerate(zip(token_ids, tokens)):
        st.write(f"Position: {position}, ID: {token_id}, Token: {token}")

    st.write(f"Start Cause 1: {start_cause1}, End Cause: {end_cause1}")
    st.write(f"Start Effect 1: {start_effect1}, End Cause: {end_effect1}")
    st.write(f"Start Signal: {start_signal}, End Signal: {end_signal}")

    def extract_span(start, end):
        return tokenizer.convert_tokens_to_string(tokens[start:end+1]) if start is not None and end is not None else ""

    cause1 = extract_span(start_cause1, end_cause1)
    cause2 = extract_span(start_cause2, end_cause2)
    effect1 = extract_span(start_effect1, end_effect1)
    effect2 = extract_span(start_effect2, end_effect2)
    if has_signal:
        signal = extract_span(start_signal, end_signal)
    if not has_signal:
        signal = 'NA'
    list1 = [start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal]
    list2 = [start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal]
    #return cause1, cause2, effect1, effect2, signal, list1, list2
    return start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal


   
def mark_text_by_position(original_text, start_idx, end_idx, color):
    """Marks text in the original string based on character positions."""
    if start_idx is not None and end_idx is not None and start_idx <= end_idx:
        return (
            original_text[:start_idx]
            + f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
            + original_text[start_idx:end_idx]
            + "</mark>"
            + original_text[end_idx:]
        )
    return original_text  # Return unchanged if indices are invalidt  # Return unchanged text if no span is found

def mark_text_by_tokens(tokenizer, tokens, start_idx, end_idx, color):
    """Highlights a span in tokenized text using HTML."""
    highlighted_tokens = copy.deepcopy(tokens)  # Avoid modifying original tokens
    if start_idx is not None and end_idx is not None and start_idx <= end_idx:
        highlighted_tokens[start_idx] = f"<span style='background-color:{color}; padding:2px; border-radius:4px;'>{highlighted_tokens[start_idx]}"
        highlighted_tokens[end_idx] = f"{highlighted_tokens[end_idx]}</span>"
    return tokenizer.convert_tokens_to_string(highlighted_tokens)

def mark_text_by_word_ids(original_text, token_ids, start_word_id, end_word_id, color):
    """Marks words in the original text based on word IDs from tokenized input."""
    words = original_text.split()  # Split text into words
    if start_word_id is not None and end_word_id is not None and start_word_id <= end_word_id:
        words[start_word_id] = f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>{words[start_word_id]}"
        words[end_word_id] = f"{words[end_word_id]}</mark>"
    
    return " ".join(words)




st.title("Causal Relation Extraction")
input_text = st.text_area("Enter your text here:", height=300)
beam_search = st.radio("Enable Beam Search?", ('No', 'Yes')) == 'Yes'


if st.button("Extract"):
    if input_text:
        start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)

        cause_text1 = mark_text_by_position(input_text, start_cause1, end_cause1, "#FFD700")  # Gold for cause
        effect_text1 = mark_text_by_position(input_text, start_effect1, end_effect1, "#90EE90")  # Light green for effect
        signal_text = mark_text_by_position(input_text, start_signal, end_signal, "#FF6347")  # Tomato red for signal

        # Display first relation
        st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
        st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
        st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
        st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)

        # Display second relation if beam search is enabled
        if beam_search:
            cause_text2 = mark_text_by_position(input_text, start_cause2, end_cause2, "#FFD700")
            effect_text2 = mark_text_by_position(input_text, start_effect2, end_effect2, "#90EE90")

            st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
            st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
            st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
            st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)

    else:
        st.warning("Please enter some text before extracting.")


        

    
if st.button("Extract1"):
    if input_text:
        start_cause_id, end_cause_id, start_effect_id, end_effect_id, start_signal_id, end_signal_id = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)

        cause_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_cause_id, end_cause_id, "#FFD700")  # Gold for cause
        effect_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_effect_id, end_effect_id, "#90EE90")  # Light green for effect
        signal_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_signal_id, end_signal_id, "#FF6347")  # Tomato red for signal

        st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
        st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
        st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
    else:
        st.warning("Please enter some text before extracting.")




if st.button("Extract1"):
    if input_text:
        start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)

        # Convert text to tokenized format
        tokenized_input = tokenizer.tokenize(input_text)
        
        cause_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause1, end_cause1, "#FFD700")  # Gold for cause
        effect_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect1, end_effect1, "#90EE90")  # Light green for effect
        signal_text = mark_text_by_tokens(tokenizer, tokenized_input, start_signal, end_signal, "#FF6347")  # Tomato red for signal

        # Display first relation
        st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
        st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
        st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
        st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)

        # Display second relation if beam search is enabled
        if beam_search:
            cause_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause2, end_cause2, "#FFD700")
            effect_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect2, end_effect2, "#90EE90")

            st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
            st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
            st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
            st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
    else:
        st.warning("Please enter some text before extracting.")