Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
+
import re
|
| 6 |
+
import copy
|
| 7 |
+
from modeling_st2 import ST2ModelV2, SignalDetector
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
from safetensors.torch import load_file
|
| 10 |
+
|
| 11 |
+
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
| 12 |
+
login(token=hf_token)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Load model & tokenizer once (cached for efficiency)
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model():
|
| 18 |
+
|
| 19 |
+
config = AutoConfig.from_pretrained("roberta-large")
|
| 20 |
+
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
|
| 22 |
+
|
| 23 |
+
class Args:
|
| 24 |
+
def __init__(self):
|
| 25 |
+
|
| 26 |
+
self.dropout = 0.1
|
| 27 |
+
self.signal_classification = True
|
| 28 |
+
self.pretrained_signal_detector = False
|
| 29 |
+
|
| 30 |
+
args = Args()
|
| 31 |
+
|
| 32 |
+
model = ST2ModelV2(args)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
repo_id = "anamargarida/SpanExtractionWithSignalCls_2"
|
| 36 |
+
filename = "model.safetensors"
|
| 37 |
+
|
| 38 |
+
# Download the model file
|
| 39 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 40 |
+
|
| 41 |
+
# Load the model weights
|
| 42 |
+
state_dict = load_file(model_path)
|
| 43 |
+
|
| 44 |
+
model.load_state_dict(state_dict)
|
| 45 |
+
|
| 46 |
+
return tokenizer, model
|
| 47 |
+
|
| 48 |
+
# Load the model and tokenizer
|
| 49 |
+
tokenizer, model = load_model()
|
| 50 |
+
|
| 51 |
+
model.eval() # Set model to evaluation mode
|
| 52 |
+
def extract_arguments(text, tokenizer, model, beam_search=True):
|
| 53 |
+
|
| 54 |
+
class Args:
|
| 55 |
+
def __init__(self):
|
| 56 |
+
self.signal_classification = True
|
| 57 |
+
self.pretrained_signal_detector = False
|
| 58 |
+
|
| 59 |
+
args = Args()
|
| 60 |
+
inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
|
| 61 |
+
|
| 62 |
+
# Get tokenized words (for reconstruction later)
|
| 63 |
+
word_ids = inputs.word_ids()
|
| 64 |
+
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
outputs = model(**inputs)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Extract logits
|
| 70 |
+
start_cause_logits = outputs["start_arg0_logits"][0]
|
| 71 |
+
end_cause_logits = outputs["end_arg0_logits"][0]
|
| 72 |
+
start_effect_logits = outputs["start_arg1_logits"][0]
|
| 73 |
+
end_effect_logits = outputs["end_arg1_logits"][0]
|
| 74 |
+
start_signal_logits = outputs["start_sig_logits"][0]
|
| 75 |
+
end_signal_logits = outputs["end_sig_logits"][0]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# Set the first and last token logits to a very low value to ignore them
|
| 79 |
+
start_cause_logits[0] = -1e-4
|
| 80 |
+
end_cause_logits[0] = -1e-4
|
| 81 |
+
start_effect_logits[0] = -1e-4
|
| 82 |
+
end_effect_logits[0] = -1e-4
|
| 83 |
+
start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
| 84 |
+
end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
| 85 |
+
start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
| 86 |
+
end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# Beam Search for position selection
|
| 90 |
+
if beam_search:
|
| 91 |
+
indices1, indices2, _, _, _ = model.beam_search_position_selector(
|
| 92 |
+
start_cause_logits=start_cause_logits,
|
| 93 |
+
end_cause_logits=end_cause_logits,
|
| 94 |
+
start_effect_logits=start_effect_logits,
|
| 95 |
+
end_effect_logits=end_effect_logits,
|
| 96 |
+
topk=5
|
| 97 |
+
)
|
| 98 |
+
start_cause1, end_cause1, start_effect1, end_effect1 = indices1
|
| 99 |
+
start_cause2, end_cause2, start_effect2, end_effect2 = indices2
|
| 100 |
+
else:
|
| 101 |
+
start_cause1 = start_cause_logits.argmax().item()
|
| 102 |
+
end_cause1 = end_cause_logits.argmax().item()
|
| 103 |
+
start_effect1 = start_effect_logits.argmax().item()
|
| 104 |
+
end_effect1 = end_effect_logits.argmax().item()
|
| 105 |
+
|
| 106 |
+
start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
has_signal = 1
|
| 110 |
+
if args.signal_classification:
|
| 111 |
+
if not args.pretrained_signal_detector:
|
| 112 |
+
has_signal = outputs["signal_classification_logits"].argmax().item()
|
| 113 |
+
else:
|
| 114 |
+
has_signal = signal_detector.predict(text=batch["text"])
|
| 115 |
+
|
| 116 |
+
if has_signal:
|
| 117 |
+
start_signal_logits[0] = -1e-4
|
| 118 |
+
end_signal_logits[0] = -1e-4
|
| 119 |
+
|
| 120 |
+
start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
| 121 |
+
end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
| 122 |
+
|
| 123 |
+
start_signal = start_signal_logits.argmax().item()
|
| 124 |
+
end_signal_logits[:start_signal] = -1e4
|
| 125 |
+
end_signal_logits[start_signal + 5:] = -1e4
|
| 126 |
+
end_signal = end_signal_logits.argmax().item()
|
| 127 |
+
|
| 128 |
+
if not has_signal:
|
| 129 |
+
start_signal, end_signal = None, None
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 133 |
+
token_ids = inputs["input_ids"][0]
|
| 134 |
+
offset_mapping = inputs["offset_mapping"][0].tolist()
|
| 135 |
+
|
| 136 |
+
for i, (token, word_id) in enumerate(zip(tokens, word_ids)):
|
| 137 |
+
st.write(f"Token {i}: {token}, Word ID: {word_id}")
|
| 138 |
+
|
| 139 |
+
st.write("Token & offset:")
|
| 140 |
+
for i, (token, offset) in enumerate(zip(tokens, offset_mapping)):
|
| 141 |
+
st.write(f"Token {i}: {token}, Offset: {offset}")
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
st.write("Token Positions, IDs, and Corresponding Tokens:")
|
| 145 |
+
for position, (token_id, token) in enumerate(zip(token_ids, tokens)):
|
| 146 |
+
st.write(f"Position: {position}, ID: {token_id}, Token: {token}")
|
| 147 |
+
|
| 148 |
+
st.write(f"Start Cause 1: {start_cause1}, End Cause: {end_cause1}")
|
| 149 |
+
st.write(f"Start Effect 1: {start_effect1}, End Cause: {end_effect1}")
|
| 150 |
+
st.write(f"Start Signal: {start_signal}, End Signal: {end_signal}")
|
| 151 |
+
|
| 152 |
+
def extract_span(start, end):
|
| 153 |
+
return tokenizer.convert_tokens_to_string(tokens[start:end+1]) if start is not None and end is not None else ""
|
| 154 |
+
|
| 155 |
+
cause1 = extract_span(start_cause1, end_cause1)
|
| 156 |
+
cause2 = extract_span(start_cause2, end_cause2)
|
| 157 |
+
effect1 = extract_span(start_effect1, end_effect1)
|
| 158 |
+
effect2 = extract_span(start_effect2, end_effect2)
|
| 159 |
+
if has_signal:
|
| 160 |
+
signal = extract_span(start_signal, end_signal)
|
| 161 |
+
if not has_signal:
|
| 162 |
+
signal = 'NA'
|
| 163 |
+
list1 = [start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal]
|
| 164 |
+
list2 = [start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal]
|
| 165 |
+
#return cause1, cause2, effect1, effect2, signal, list1, list2
|
| 166 |
+
return start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def mark_text_by_position(original_text, start_idx, end_idx, color):
|
| 171 |
+
"""Marks text in the original string based on character positions."""
|
| 172 |
+
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
|
| 173 |
+
return (
|
| 174 |
+
original_text[:start_idx]
|
| 175 |
+
+ f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
|
| 176 |
+
+ original_text[start_idx:end_idx]
|
| 177 |
+
+ "</mark>"
|
| 178 |
+
+ original_text[end_idx:]
|
| 179 |
+
)
|
| 180 |
+
return original_text # Return unchanged if indices are invalidt # Return unchanged text if no span is found
|
| 181 |
+
|
| 182 |
+
def mark_text_by_tokens(tokenizer, tokens, start_idx, end_idx, color):
|
| 183 |
+
"""Highlights a span in tokenized text using HTML."""
|
| 184 |
+
highlighted_tokens = copy.deepcopy(tokens) # Avoid modifying original tokens
|
| 185 |
+
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
|
| 186 |
+
highlighted_tokens[start_idx] = f"<span style='background-color:{color}; padding:2px; border-radius:4px;'>{highlighted_tokens[start_idx]}"
|
| 187 |
+
highlighted_tokens[end_idx] = f"{highlighted_tokens[end_idx]}</span>"
|
| 188 |
+
return tokenizer.convert_tokens_to_string(highlighted_tokens)
|
| 189 |
+
|
| 190 |
+
def mark_text_by_word_ids(original_text, token_ids, start_word_id, end_word_id, color):
|
| 191 |
+
"""Marks words in the original text based on word IDs from tokenized input."""
|
| 192 |
+
words = original_text.split() # Split text into words
|
| 193 |
+
if start_word_id is not None and end_word_id is not None and start_word_id <= end_word_id:
|
| 194 |
+
words[start_word_id] = f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>{words[start_word_id]}"
|
| 195 |
+
words[end_word_id] = f"{words[end_word_id]}</mark>"
|
| 196 |
+
|
| 197 |
+
return " ".join(words)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
st.title("Causal Relation Extraction")
|
| 203 |
+
input_text = st.text_area("Enter your text here:", height=300)
|
| 204 |
+
beam_search = st.radio("Enable Beam Search?", ('No', 'Yes')) == 'Yes'
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
if st.button("Extract"):
|
| 208 |
+
if input_text:
|
| 209 |
+
start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
| 210 |
+
|
| 211 |
+
cause_text = mark_text_by_position(input_text, start_cause_id, end_cause_id, "#FFD700") # Gold for cause
|
| 212 |
+
effect_text = mark_text_by_position(input_text, start_effect_id, end_effect_id, "#90EE90") # Light green for effect
|
| 213 |
+
signal_text = mark_text_by_position(input_text, start_signal_id, end_signal_id, "#FF6347") # Tomato red for signal
|
| 214 |
+
|
| 215 |
+
st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
|
| 216 |
+
st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
|
| 217 |
+
st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
|
| 218 |
+
else:
|
| 219 |
+
st.warning("Please enter some text before extracting.")
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
if st.button("Extract1"):
|
| 223 |
+
if input_text:
|
| 224 |
+
start_cause_id, end_cause_id, start_effect_id, end_effect_id, start_signal_id, end_signal_id = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
| 225 |
+
|
| 226 |
+
cause_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_cause_id, end_cause_id, "#FFD700") # Gold for cause
|
| 227 |
+
effect_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_effect_id, end_effect_id, "#90EE90") # Light green for effect
|
| 228 |
+
signal_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_signal_id, end_signal_id, "#FF6347") # Tomato red for signal
|
| 229 |
+
|
| 230 |
+
st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
|
| 231 |
+
st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
|
| 232 |
+
st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
|
| 233 |
+
else:
|
| 234 |
+
st.warning("Please enter some text before extracting.")
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
if st.button("Extract1"):
|
| 240 |
+
if input_text:
|
| 241 |
+
start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
| 242 |
+
|
| 243 |
+
# Convert text to tokenized format
|
| 244 |
+
tokenized_input = tokenizer.tokenize(input_text)
|
| 245 |
+
|
| 246 |
+
cause_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause1, end_cause1, "#FFD700") # Gold for cause
|
| 247 |
+
effect_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect1, end_effect1, "#90EE90") # Light green for effect
|
| 248 |
+
signal_text = mark_text_by_tokens(tokenizer, tokenized_input, start_signal, end_signal, "#FF6347") # Tomato red for signal
|
| 249 |
+
|
| 250 |
+
# Display first relation
|
| 251 |
+
st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
|
| 252 |
+
st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
|
| 253 |
+
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
|
| 254 |
+
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
| 255 |
+
|
| 256 |
+
# Display second relation if beam search is enabled
|
| 257 |
+
if beam_search:
|
| 258 |
+
cause_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause2, end_cause2, "#FFD700")
|
| 259 |
+
effect_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect2, end_effect2, "#90EE90")
|
| 260 |
+
|
| 261 |
+
st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
|
| 262 |
+
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
|
| 263 |
+
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
|
| 264 |
+
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
| 265 |
+
else:
|
| 266 |
+
st.warning("Please enter some text before extracting.")
|