Travel.Com / app.py
analist's picture
Update app.py
200e538 verified
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import plotly.express as px
import shap
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
def load_data():
data = pd.read_csv('exported_named_train_good.csv')
data_test = pd.read_csv('exported_named_test_good.csv')
X_train = data.drop("Target", axis=1)
y_train = data['Target']
X_test = data_test.drop('Target', axis=1)
y_test = data_test['Target']
return X_train, y_train, X_test, y_test, X_train.columns
def train_models(X_train, y_train, X_test, y_test):
models = {
"Logistic Regression": LogisticRegression(random_state=42),
"Decision Tree": DecisionTreeClassifier(random_state=42),
"Random Forest": RandomForestClassifier(n_estimators=100, min_samples_split=2,max_features=7, max_depth=None, random_state=42),
"Gradient Boost": GradientBoostingClassifier(random_state=42),
"Extreme Gradient Boosting": XGBClassifier(random_state=42, n_estimators=500, learning_rate=0.0789),
"Light Gradient Boosting": LGBMClassifier(random_state=42, n_estimators=500, learning_rate=0.0789)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
# Predictions
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Metrics
results[name] = {
'model': model,
'train_metrics': {
'accuracy': accuracy_score(y_train, y_train_pred),
'f1': f1_score(y_train, y_train_pred, average='weighted'),
'precision': precision_score(y_train, y_train_pred),
'recall': recall_score(y_train, y_train_pred),
'roc_auc': roc_auc_score(y_train, y_train_pred)
},
'test_metrics': {
'accuracy': accuracy_score(y_test, y_test_pred),
'f1': f1_score(y_test, y_test_pred, average='weighted'),
'precision': precision_score(y_test, y_test_pred),
'recall': recall_score(y_test, y_test_pred),
'roc_auc': roc_auc_score(y_test, y_test_pred)
}
}
return results
def plot_model_performance(results):
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
# Training metrics
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
for model in results.keys()}
train_df = pd.DataFrame(train_data, index=metrics)
train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
axes[0].set_ylim(0, 1)
# Test metrics
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
for model in results.keys()}
test_df = pd.DataFrame(test_data, index=metrics)
test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
axes[1].set_ylim(0, 1)
plt.tight_layout()
return fig
def plot_feature_importance(model, feature_names, model_type):
plt.figure(figsize=(10, 6))
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
importance = model.feature_importances_
elif model_type == "Logistic Regression":
importance = np.abs(model.coef_[0])
importance_df = pd.DataFrame({
'feature': feature_names,
'importance': importance
}).sort_values('importance', ascending=True)
plt.barh(importance_df['feature'], importance_df['importance'])
plt.title(f"Feature Importance - {model_type}")
return plt.gcf()
def prepare_clustering_data(data, numeric_columns):
scaler = StandardScaler()
scaled_features = scaler.fit_transform(data[numeric_columns])
return scaled_features, scaler
def perform_clustering(scaled_features, n_clusters):
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(scaled_features)
return kmeans, cluster_labels
def plot_clusters_3d(data, labels, features, product_category):
pca = PCA(n_components=3)
components = pca.fit_transform(data)
df_plot = pd.DataFrame({
'PC1': components[:, 0],
'PC2': components[:, 1],
'PC3': components[:, 2],
'Cluster': [f"Groupe {i}" for i in labels]
})
fig = px.scatter_3d(
df_plot,
x='PC1',
y='PC2',
z='PC3',
color='Cluster',
title=f'Analyse des sous-groupes pour {product_category}',
labels={
'PC1': 'Composante 1',
'PC2': 'Composante 2',
'PC3': 'Composante 3'
}
)
fig.update_layout(
scene=dict(
xaxis_title='Composante 1',
yaxis_title='Composante 2',
zaxis_title='Composante 3'
),
legend_title_text='Sous-groupes'
)
return fig
def analyze_clusters(data, cluster_labels, numeric_columns, product_category):
data_with_clusters = data.copy()
data_with_clusters['Cluster'] = cluster_labels
cluster_stats = []
for cluster in range(len(np.unique(cluster_labels))):
cluster_data = data_with_clusters[data_with_clusters['Cluster'] == cluster]
stats = {
'Cluster': cluster,
'Taille': len(cluster_data),
'Product': product_category,
'Caractéristiques principales': {}
}
for col in numeric_columns:
stats['Caractéristiques principales'][col] = cluster_data[col].mean()
cluster_stats.append(stats)
return cluster_stats
def add_clustering_analysis(data):
st.header("Analyse par Clustering des Produits Acceptés")
if data is None:
st.error("Veuillez charger des données pour l'analyse")
return
# Filtrer uniquement les clients ayant accepté un produit
accepted_data = data[data['ProdTaken'] == 1]
if len(accepted_data) == 0:
st.error("Aucune donnée trouvée pour les produits acceptés")
return
st.write(f"Nombre total de produits acceptés: {len(accepted_data)}")
# Obtenir les différents types de produits proposés
product_types = accepted_data['ProductPitched'].unique()
st.write(f"Types de produits disponibles: {', '.join(product_types)}")
# Sélection des caractéristiques pour le clustering
numeric_columns = st.multiselect(
"Sélectionner les caractéristiques pour l'analyse",
data.select_dtypes(include=['float64', 'int64']).columns,
help="Choisissez les caractéristiques numériques pertinentes pour l'analyse"
)
if numeric_columns:
for product in product_types:
st.subheader(f"\nAnalyse du produit: {product}")
product_data = accepted_data[accepted_data['ProductPitched'] == product]
st.write(f"Nombre de clients ayant accepté ce produit: {len(product_data)}")
max_clusters = min(len(product_data) - 1, 10)
if max_clusters < 2:
st.warning(f"Pas assez de données pour le clustering du produit {product}")
continue
n_clusters = st.slider(
f"Nombre de sous-groupes pour {product}",
2, max_clusters,
min(3, max_clusters),
key=f"slider_{product}"
)
scaled_features, _ = prepare_clustering_data(product_data, numeric_columns)
kmeans, cluster_labels = perform_clustering(scaled_features, n_clusters)
silhouette_avg = silhouette_score(scaled_features, cluster_labels)
st.write(f"Score de silhouette: {silhouette_avg:.3f}")
fig = plot_clusters_3d(scaled_features, cluster_labels, numeric_columns, product)
st.plotly_chart(fig)
st.write("### Caractéristiques des sous-groupes")
cluster_stats = analyze_clusters(product_data, cluster_labels, numeric_columns, product)
global_means = product_data[numeric_columns].mean()
for stats in cluster_stats:
st.write(f"\n**Sous-groupe {stats['Cluster']} ({stats['Taille']} clients)**")
comparison_data = []
for feat, value in stats['Caractéristiques principales'].items():
global_mean = global_means[feat]
diff_percent = ((value - global_mean) / global_mean * 100)
comparison_data.append({
'Caractéristique': feat,
'Valeur moyenne du groupe': f"{value:.2f}",
'Moyenne globale': f"{global_mean:.2f}",
'Différence (%)': f"{diff_percent:+.1f}%"
})
comparison_df = pd.DataFrame(comparison_data)
st.table(comparison_df)
st.write("### Recommandations marketing")
distinctive_features = []
for col in numeric_columns:
cluster_mean = product_data[cluster_labels == stats['Cluster']][col].mean()
global_mean = product_data[col].mean()
diff_percent = ((cluster_mean - global_mean) / global_mean * 100)
if abs(diff_percent) > 10:
distinctive_features.append({
'feature': col,
'diff': diff_percent,
'value': cluster_mean
})
if distinctive_features:
recommendations = [
f"- Groupe avec {feat['feature']} {'supérieur' if feat['diff'] > 0 else 'inférieur'} " \
f"à la moyenne ({feat['diff']:+.1f}%)"
for feat in distinctive_features
]
st.write("\n".join(recommendations))
else:
st.write("- Pas de caractéristiques fortement distinctives identifiées")
def app():
st.title("Interpréteur de Modèles ML")
# Load data
X_train, y_train, X_test, y_test, feature_names = load_data()
# Train models if not in session state
if 'model_results' not in st.session_state:
with st.spinner("Entraînement des modèles en cours..."):
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
# Sidebar
st.sidebar.title("Navigation")
selected_model = st.sidebar.selectbox(
"Sélectionnez un modèle",
list(st.session_state.model_results.keys())
)
page = st.sidebar.radio(
"Sélectionnez une section",
["Performance des modèles",
"Interprétation du modèle",
"Analyse des caractéristiques",
"Simulateur de prédictions",
"Analyse par Clustering"]
)
current_model = st.session_state.model_results[selected_model]['model']
# Performance des modèles
if page == "Performance des modèles":
st.header("Performance des modèles")
# Plot global performance comparison
st.subheader("Comparaison des performances")
performance_fig = plot_model_performance(st.session_state.model_results)
st.pyplot(performance_fig)
# Detailed metrics for selected model
st.subheader(f"Métriques détaillées - {selected_model}")
col1, col2 = st.columns(2)
with col1:
st.write("Métriques d'entraînement:")
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
st.write(f"{metric}: {value:.4f}")
with col2:
st.write("Métriques de test:")
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
st.write(f"{metric}: {value:.4f}")
# Interprétation du modèle
elif page == "Interprétation du modèle":
st.header(f"Interprétation du modèle - {selected_model}")
if selected_model in ["Decision Tree", "Random Forest"]:
if selected_model == "Decision Tree":
st.subheader("Visualisation de l'arbre")
max_depth = st.slider("Profondeur maximale à afficher", 1, 5, 3)
fig, ax = plt.subplots(figsize=(20, 10))
plot_tree(current_model, feature_names=list(feature_names),
max_depth=max_depth, filled=True, rounded=True)
st.pyplot(fig)
st.subheader("Règles de décision importantes")
if selected_model == "Decision Tree":
st.text(export_text(current_model, feature_names=list(feature_names)))
# SHAP values for all models
st.subheader("SHAP Values")
with st.spinner("Calcul des valeurs SHAP en cours..."):
explainer = shap.TreeExplainer(current_model) if selected_model != "Logistic Regression" \
else shap.LinearExplainer(current_model, X_train)
shap_values = explainer.shap_values(X_train[:100]) # Using first 100 samples for speed
fig, ax = plt.subplots(figsize=(10, 6))
shap.summary_plot(shap_values, X_train[:100], feature_names=list(feature_names),
show=False)
st.pyplot(fig)
# Analyse des caractéristiques
elif page == "Analyse des caractéristiques":
st.header("Analyse des caractéristiques")
# Feature importance
st.subheader("Importance des caractéristiques")
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
st.pyplot(importance_fig)
# Feature correlation
st.subheader("Matrice de corrélation")
corr_matrix = X_train.corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
st.pyplot(fig)
elif page == "Analyse par Clustering":
# Charger les données pour le clustering
uploaded_file = st.file_uploader("Charger les données pour le clustering (CSV)", type="csv")
if uploaded_file is not None:
data = pd.read_csv(uploaded_file)
data = data.dropna()
add_clustering_analysis(data)
else:
st.warning("Veuillez charger un fichier CSV pour l'analyse par clustering")
# Simulateur de prédictions
else:
st.header("Simulateur de prédictions")
input_values = {}
for feature in feature_names:
if X_train[feature].dtype == 'object':
input_values[feature] = st.selectbox(
f"Sélectionnez {feature}",
options=X_train[feature].unique()
)
else:
input_values[feature] = st.slider(
f"Valeur pour {feature}",
float(X_train[feature].min()),
float(X_train[feature].max()),
float(X_train[feature].mean())
)
if st.button("Prédire"):
input_df = pd.DataFrame([input_values])
prediction = current_model.predict_proba(input_df)
st.write("Probabilités prédites:")
st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
if selected_model == "Decision Tree":
st.subheader("Chemin de décision")
node_indicator = current_model.decision_path(input_df)
leaf_id = current_model.apply(input_df)
node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
rules = []
for node_id in node_index:
if node_id != leaf_id[0]:
threshold = current_model.tree_.threshold[node_id]
feature = feature_names[current_model.tree_.feature[node_id]]
if input_df.iloc[0][feature] <= threshold:
rules.append(f"{feature}{threshold:.2f}")
else:
rules.append(f"{feature} > {threshold:.2f}")
for rule in rules:
st.write(rule)
if __name__ == "__main__":
app()