Spaces:
Sleeping
Sleeping
File size: 17,493 Bytes
3a61454 00994c4 3a61454 058ca0e b1e8012 d0ec537 b1e8012 00994c4 058ca0e 00994c4 93fbd34 b1e8012 97c2ba7 00994c4 d0ec537 97c2ba7 00994c4 4c41588 93fbd34 4c41588 00994c4 97c2ba7 00994c4 fc8d6e6 00994c4 b1e8012 97c2ba7 00994c4 97c2ba7 00994c4 97c2ba7 00994c4 1d486bb 00994c4 97c2ba7 00994c4 42fa5c8 407f7b6 97c2ba7 96fbc4d 97c2ba7 00994c4 97c2ba7 00994c4 97c2ba7 96fbc4d 97c2ba7 8c5fb8a 96fbc4d 407f7b6 96fbc4d 00994c4 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a 96fbc4d 8c5fb8a ee9aa01 96fbc4d 407f7b6 200e538 407f7b6 96fbc4d 42fa5c8 97c2ba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import plotly.express as px
import shap
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
def load_data():
data = pd.read_csv('exported_named_train_good.csv')
data_test = pd.read_csv('exported_named_test_good.csv')
X_train = data.drop("Target", axis=1)
y_train = data['Target']
X_test = data_test.drop('Target', axis=1)
y_test = data_test['Target']
return X_train, y_train, X_test, y_test, X_train.columns
def train_models(X_train, y_train, X_test, y_test):
models = {
"Logistic Regression": LogisticRegression(random_state=42),
"Decision Tree": DecisionTreeClassifier(random_state=42),
"Random Forest": RandomForestClassifier(n_estimators=100, min_samples_split=2,max_features=7, max_depth=None, random_state=42),
"Gradient Boost": GradientBoostingClassifier(random_state=42),
"Extreme Gradient Boosting": XGBClassifier(random_state=42, n_estimators=500, learning_rate=0.0789),
"Light Gradient Boosting": LGBMClassifier(random_state=42, n_estimators=500, learning_rate=0.0789)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
# Predictions
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Metrics
results[name] = {
'model': model,
'train_metrics': {
'accuracy': accuracy_score(y_train, y_train_pred),
'f1': f1_score(y_train, y_train_pred, average='weighted'),
'precision': precision_score(y_train, y_train_pred),
'recall': recall_score(y_train, y_train_pred),
'roc_auc': roc_auc_score(y_train, y_train_pred)
},
'test_metrics': {
'accuracy': accuracy_score(y_test, y_test_pred),
'f1': f1_score(y_test, y_test_pred, average='weighted'),
'precision': precision_score(y_test, y_test_pred),
'recall': recall_score(y_test, y_test_pred),
'roc_auc': roc_auc_score(y_test, y_test_pred)
}
}
return results
def plot_model_performance(results):
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
# Training metrics
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
for model in results.keys()}
train_df = pd.DataFrame(train_data, index=metrics)
train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
axes[0].set_ylim(0, 1)
# Test metrics
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
for model in results.keys()}
test_df = pd.DataFrame(test_data, index=metrics)
test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
axes[1].set_ylim(0, 1)
plt.tight_layout()
return fig
def plot_feature_importance(model, feature_names, model_type):
plt.figure(figsize=(10, 6))
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
importance = model.feature_importances_
elif model_type == "Logistic Regression":
importance = np.abs(model.coef_[0])
importance_df = pd.DataFrame({
'feature': feature_names,
'importance': importance
}).sort_values('importance', ascending=True)
plt.barh(importance_df['feature'], importance_df['importance'])
plt.title(f"Feature Importance - {model_type}")
return plt.gcf()
def prepare_clustering_data(data, numeric_columns):
scaler = StandardScaler()
scaled_features = scaler.fit_transform(data[numeric_columns])
return scaled_features, scaler
def perform_clustering(scaled_features, n_clusters):
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(scaled_features)
return kmeans, cluster_labels
def plot_clusters_3d(data, labels, features, product_category):
pca = PCA(n_components=3)
components = pca.fit_transform(data)
df_plot = pd.DataFrame({
'PC1': components[:, 0],
'PC2': components[:, 1],
'PC3': components[:, 2],
'Cluster': [f"Groupe {i}" for i in labels]
})
fig = px.scatter_3d(
df_plot,
x='PC1',
y='PC2',
z='PC3',
color='Cluster',
title=f'Analyse des sous-groupes pour {product_category}',
labels={
'PC1': 'Composante 1',
'PC2': 'Composante 2',
'PC3': 'Composante 3'
}
)
fig.update_layout(
scene=dict(
xaxis_title='Composante 1',
yaxis_title='Composante 2',
zaxis_title='Composante 3'
),
legend_title_text='Sous-groupes'
)
return fig
def analyze_clusters(data, cluster_labels, numeric_columns, product_category):
data_with_clusters = data.copy()
data_with_clusters['Cluster'] = cluster_labels
cluster_stats = []
for cluster in range(len(np.unique(cluster_labels))):
cluster_data = data_with_clusters[data_with_clusters['Cluster'] == cluster]
stats = {
'Cluster': cluster,
'Taille': len(cluster_data),
'Product': product_category,
'Caractéristiques principales': {}
}
for col in numeric_columns:
stats['Caractéristiques principales'][col] = cluster_data[col].mean()
cluster_stats.append(stats)
return cluster_stats
def add_clustering_analysis(data):
st.header("Analyse par Clustering des Produits Acceptés")
if data is None:
st.error("Veuillez charger des données pour l'analyse")
return
# Filtrer uniquement les clients ayant accepté un produit
accepted_data = data[data['ProdTaken'] == 1]
if len(accepted_data) == 0:
st.error("Aucune donnée trouvée pour les produits acceptés")
return
st.write(f"Nombre total de produits acceptés: {len(accepted_data)}")
# Obtenir les différents types de produits proposés
product_types = accepted_data['ProductPitched'].unique()
st.write(f"Types de produits disponibles: {', '.join(product_types)}")
# Sélection des caractéristiques pour le clustering
numeric_columns = st.multiselect(
"Sélectionner les caractéristiques pour l'analyse",
data.select_dtypes(include=['float64', 'int64']).columns,
help="Choisissez les caractéristiques numériques pertinentes pour l'analyse"
)
if numeric_columns:
for product in product_types:
st.subheader(f"\nAnalyse du produit: {product}")
product_data = accepted_data[accepted_data['ProductPitched'] == product]
st.write(f"Nombre de clients ayant accepté ce produit: {len(product_data)}")
max_clusters = min(len(product_data) - 1, 10)
if max_clusters < 2:
st.warning(f"Pas assez de données pour le clustering du produit {product}")
continue
n_clusters = st.slider(
f"Nombre de sous-groupes pour {product}",
2, max_clusters,
min(3, max_clusters),
key=f"slider_{product}"
)
scaled_features, _ = prepare_clustering_data(product_data, numeric_columns)
kmeans, cluster_labels = perform_clustering(scaled_features, n_clusters)
silhouette_avg = silhouette_score(scaled_features, cluster_labels)
st.write(f"Score de silhouette: {silhouette_avg:.3f}")
fig = plot_clusters_3d(scaled_features, cluster_labels, numeric_columns, product)
st.plotly_chart(fig)
st.write("### Caractéristiques des sous-groupes")
cluster_stats = analyze_clusters(product_data, cluster_labels, numeric_columns, product)
global_means = product_data[numeric_columns].mean()
for stats in cluster_stats:
st.write(f"\n**Sous-groupe {stats['Cluster']} ({stats['Taille']} clients)**")
comparison_data = []
for feat, value in stats['Caractéristiques principales'].items():
global_mean = global_means[feat]
diff_percent = ((value - global_mean) / global_mean * 100)
comparison_data.append({
'Caractéristique': feat,
'Valeur moyenne du groupe': f"{value:.2f}",
'Moyenne globale': f"{global_mean:.2f}",
'Différence (%)': f"{diff_percent:+.1f}%"
})
comparison_df = pd.DataFrame(comparison_data)
st.table(comparison_df)
st.write("### Recommandations marketing")
distinctive_features = []
for col in numeric_columns:
cluster_mean = product_data[cluster_labels == stats['Cluster']][col].mean()
global_mean = product_data[col].mean()
diff_percent = ((cluster_mean - global_mean) / global_mean * 100)
if abs(diff_percent) > 10:
distinctive_features.append({
'feature': col,
'diff': diff_percent,
'value': cluster_mean
})
if distinctive_features:
recommendations = [
f"- Groupe avec {feat['feature']} {'supérieur' if feat['diff'] > 0 else 'inférieur'} " \
f"à la moyenne ({feat['diff']:+.1f}%)"
for feat in distinctive_features
]
st.write("\n".join(recommendations))
else:
st.write("- Pas de caractéristiques fortement distinctives identifiées")
def app():
st.title("Interpréteur de Modèles ML")
# Load data
X_train, y_train, X_test, y_test, feature_names = load_data()
# Train models if not in session state
if 'model_results' not in st.session_state:
with st.spinner("Entraînement des modèles en cours..."):
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
# Sidebar
st.sidebar.title("Navigation")
selected_model = st.sidebar.selectbox(
"Sélectionnez un modèle",
list(st.session_state.model_results.keys())
)
page = st.sidebar.radio(
"Sélectionnez une section",
["Performance des modèles",
"Interprétation du modèle",
"Analyse des caractéristiques",
"Simulateur de prédictions",
"Analyse par Clustering"]
)
current_model = st.session_state.model_results[selected_model]['model']
# Performance des modèles
if page == "Performance des modèles":
st.header("Performance des modèles")
# Plot global performance comparison
st.subheader("Comparaison des performances")
performance_fig = plot_model_performance(st.session_state.model_results)
st.pyplot(performance_fig)
# Detailed metrics for selected model
st.subheader(f"Métriques détaillées - {selected_model}")
col1, col2 = st.columns(2)
with col1:
st.write("Métriques d'entraînement:")
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
st.write(f"{metric}: {value:.4f}")
with col2:
st.write("Métriques de test:")
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
st.write(f"{metric}: {value:.4f}")
# Interprétation du modèle
elif page == "Interprétation du modèle":
st.header(f"Interprétation du modèle - {selected_model}")
if selected_model in ["Decision Tree", "Random Forest"]:
if selected_model == "Decision Tree":
st.subheader("Visualisation de l'arbre")
max_depth = st.slider("Profondeur maximale à afficher", 1, 5, 3)
fig, ax = plt.subplots(figsize=(20, 10))
plot_tree(current_model, feature_names=list(feature_names),
max_depth=max_depth, filled=True, rounded=True)
st.pyplot(fig)
st.subheader("Règles de décision importantes")
if selected_model == "Decision Tree":
st.text(export_text(current_model, feature_names=list(feature_names)))
# SHAP values for all models
st.subheader("SHAP Values")
with st.spinner("Calcul des valeurs SHAP en cours..."):
explainer = shap.TreeExplainer(current_model) if selected_model != "Logistic Regression" \
else shap.LinearExplainer(current_model, X_train)
shap_values = explainer.shap_values(X_train[:100]) # Using first 100 samples for speed
fig, ax = plt.subplots(figsize=(10, 6))
shap.summary_plot(shap_values, X_train[:100], feature_names=list(feature_names),
show=False)
st.pyplot(fig)
# Analyse des caractéristiques
elif page == "Analyse des caractéristiques":
st.header("Analyse des caractéristiques")
# Feature importance
st.subheader("Importance des caractéristiques")
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
st.pyplot(importance_fig)
# Feature correlation
st.subheader("Matrice de corrélation")
corr_matrix = X_train.corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
st.pyplot(fig)
elif page == "Analyse par Clustering":
# Charger les données pour le clustering
uploaded_file = st.file_uploader("Charger les données pour le clustering (CSV)", type="csv")
if uploaded_file is not None:
data = pd.read_csv(uploaded_file)
data = data.dropna()
add_clustering_analysis(data)
else:
st.warning("Veuillez charger un fichier CSV pour l'analyse par clustering")
# Simulateur de prédictions
else:
st.header("Simulateur de prédictions")
input_values = {}
for feature in feature_names:
if X_train[feature].dtype == 'object':
input_values[feature] = st.selectbox(
f"Sélectionnez {feature}",
options=X_train[feature].unique()
)
else:
input_values[feature] = st.slider(
f"Valeur pour {feature}",
float(X_train[feature].min()),
float(X_train[feature].max()),
float(X_train[feature].mean())
)
if st.button("Prédire"):
input_df = pd.DataFrame([input_values])
prediction = current_model.predict_proba(input_df)
st.write("Probabilités prédites:")
st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
if selected_model == "Decision Tree":
st.subheader("Chemin de décision")
node_indicator = current_model.decision_path(input_df)
leaf_id = current_model.apply(input_df)
node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
rules = []
for node_id in node_index:
if node_id != leaf_id[0]:
threshold = current_model.tree_.threshold[node_id]
feature = feature_names[current_model.tree_.feature[node_id]]
if input_df.iloc[0][feature] <= threshold:
rules.append(f"{feature} ≤ {threshold:.2f}")
else:
rules.append(f"{feature} > {threshold:.2f}")
for rule in rules:
st.write(rule)
if __name__ == "__main__":
app() |