Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -96,216 +96,148 @@ def plot_feature_importance(model, feature_names, model_type):
|
|
96 |
plt.title(f"Feature Importance - {model_type}")
|
97 |
return plt.gcf()
|
98 |
|
99 |
-
import streamlit as st
|
100 |
-
import pandas as pd
|
101 |
-
import numpy as np
|
102 |
-
import matplotlib.pyplot as plt
|
103 |
-
from sklearn.tree import plot_tree, export_text
|
104 |
-
import seaborn as sns
|
105 |
-
from sklearn.preprocessing import LabelEncoder
|
106 |
-
from sklearn.ensemble import RandomForestClassifier
|
107 |
-
from sklearn.tree import DecisionTreeClassifier
|
108 |
-
from sklearn.ensemble import GradientBoostingClassifier
|
109 |
-
from sklearn.linear_model import LogisticRegression
|
110 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
111 |
-
import shap
|
112 |
-
|
113 |
-
# Configuration de la page
|
114 |
-
st.set_page_config(
|
115 |
-
page_title="ML Model Interpreter",
|
116 |
-
layout="wide",
|
117 |
-
initial_sidebar_state="expanded"
|
118 |
-
)
|
119 |
-
|
120 |
-
# CSS personnalisé
|
121 |
-
st.markdown("""
|
122 |
-
<style>
|
123 |
-
.main-header {
|
124 |
-
color: #0D47A1;
|
125 |
-
text-align: center;
|
126 |
-
padding: 1rem;
|
127 |
-
background: linear-gradient(90deg, #FFFFFF 0%, #90CAF9 50%, #FFFFFF 100%);
|
128 |
-
border-radius: 10px;
|
129 |
-
margin-bottom: 2rem;
|
130 |
-
}
|
131 |
-
|
132 |
-
.metric-card {
|
133 |
-
background-color: white;
|
134 |
-
padding: 1.5rem;
|
135 |
-
border-radius: 10px;
|
136 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
137 |
-
margin-bottom: 1rem;
|
138 |
-
}
|
139 |
-
|
140 |
-
.sub-header {
|
141 |
-
color: #1E88E5;
|
142 |
-
border-bottom: 2px solid #90CAF9;
|
143 |
-
padding-bottom: 0.5rem;
|
144 |
-
margin-bottom: 1rem;
|
145 |
-
}
|
146 |
-
|
147 |
-
.metric-value {
|
148 |
-
font-size: 1.5rem;
|
149 |
-
font-weight: bold;
|
150 |
-
color: #1E88E5;
|
151 |
-
}
|
152 |
-
|
153 |
-
div[data-testid="stMetricValue"] {
|
154 |
-
color: #1E88E5;
|
155 |
-
}
|
156 |
-
</style>
|
157 |
-
""", unsafe_allow_html=True)
|
158 |
-
|
159 |
-
def custom_metric_card(title, value, prefix=""):
|
160 |
-
return f"""
|
161 |
-
<div class="metric-card">
|
162 |
-
<h3 style="color: #1E88E5; margin-bottom: 0.5rem;">{title}</h3>
|
163 |
-
<p class="metric-value">{prefix}{value:.4f}</p>
|
164 |
-
</div>
|
165 |
-
"""
|
166 |
-
|
167 |
-
def set_plot_style(fig):
|
168 |
-
"""Configure le style des graphiques"""
|
169 |
-
colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
|
170 |
-
for ax in fig.axes:
|
171 |
-
ax.set_facecolor('#F8F9FA')
|
172 |
-
ax.grid(True, linestyle='--', alpha=0.3, color='#666666')
|
173 |
-
ax.spines['top'].set_visible(False)
|
174 |
-
ax.spines['right'].set_visible(False)
|
175 |
-
ax.tick_params(axis='both', colors='#666666')
|
176 |
-
ax.set_axisbelow(True)
|
177 |
-
return fig, colors
|
178 |
-
|
179 |
-
def plot_model_performance(results):
|
180 |
-
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
|
181 |
-
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
|
182 |
-
fig, colors = set_plot_style(fig)
|
183 |
-
|
184 |
-
# Training metrics
|
185 |
-
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
|
186 |
-
for model in results.keys()}
|
187 |
-
train_df = pd.DataFrame(train_data, index=metrics)
|
188 |
-
train_df.plot(kind='bar', ax=axes[0], color=colors)
|
189 |
-
axes[0].set_title('Performance d\'Entraînement', color='#0D47A1', pad=20)
|
190 |
-
axes[0].set_ylim(0, 1)
|
191 |
-
|
192 |
-
# Test metrics
|
193 |
-
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
|
194 |
-
for model in results.keys()}
|
195 |
-
test_df = pd.DataFrame(test_data, index=metrics)
|
196 |
-
test_df.plot(kind='bar', ax=axes[1], color=colors)
|
197 |
-
axes[1].set_title('Performance de Test', color='#0D47A1', pad=20)
|
198 |
-
axes[1].set_ylim(0, 1)
|
199 |
-
|
200 |
-
# Style des graphiques
|
201 |
-
for ax in axes:
|
202 |
-
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
203 |
-
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
204 |
-
|
205 |
-
plt.tight_layout()
|
206 |
-
return fig
|
207 |
-
|
208 |
-
def plot_feature_importance(model, feature_names, model_type):
|
209 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
210 |
-
fig, colors = set_plot_style(fig)
|
211 |
-
|
212 |
-
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
|
213 |
-
importance = model.feature_importances_
|
214 |
-
elif model_type == "Logistic Regression":
|
215 |
-
importance = np.abs(model.coef_[0])
|
216 |
-
|
217 |
-
importance_df = pd.DataFrame({
|
218 |
-
'feature': feature_names,
|
219 |
-
'importance': importance
|
220 |
-
}).sort_values('importance', ascending=True)
|
221 |
-
|
222 |
-
ax.barh(importance_df['feature'], importance_df['importance'],
|
223 |
-
color='#1E88E5', alpha=0.8)
|
224 |
-
ax.set_title("Importance des Caractéristiques", color='#0D47A1', pad=20)
|
225 |
-
|
226 |
-
return fig
|
227 |
-
|
228 |
-
def plot_correlation_matrix(data):
|
229 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
230 |
-
fig, _ = set_plot_style(fig)
|
231 |
-
|
232 |
-
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', center=0,
|
233 |
-
ax=ax, fmt='.2f', square=True)
|
234 |
-
ax.set_title("Matrice de Corrélation", color='#0D47A1', pad=20)
|
235 |
-
|
236 |
-
return fig
|
237 |
-
|
238 |
def app():
|
239 |
-
st.
|
240 |
-
unsafe_allow_html=True)
|
241 |
|
242 |
# Load data
|
243 |
X_train, y_train, X_test, y_test, feature_names = load_data()
|
244 |
|
245 |
# Train models if not in session state
|
246 |
if 'model_results' not in st.session_state:
|
247 |
-
with st.spinner("
|
248 |
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
249 |
|
250 |
# Sidebar
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
["Performance des modèles",
|
265 |
-
"Interprétation du modèle",
|
266 |
-
"Analyse des caractéristiques",
|
267 |
-
"Simulateur de prédictions"]
|
268 |
-
)
|
269 |
|
270 |
current_model = st.session_state.model_results[selected_model]['model']
|
271 |
|
272 |
-
#
|
273 |
if page == "Performance des modèles":
|
274 |
-
st.
|
275 |
-
unsafe_allow_html=True)
|
276 |
|
|
|
|
|
277 |
performance_fig = plot_model_performance(st.session_state.model_results)
|
278 |
st.pyplot(performance_fig)
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
col1, col2 = st.columns(2)
|
|
|
284 |
with col1:
|
285 |
-
st.
|
286 |
-
unsafe_allow_html=True)
|
287 |
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
|
288 |
-
st.
|
289 |
-
unsafe_allow_html=True)
|
290 |
|
291 |
with col2:
|
292 |
-
st.
|
293 |
-
unsafe_allow_html=True)
|
294 |
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
|
295 |
-
st.
|
296 |
-
unsafe_allow_html=True)
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
elif page == "Analyse des caractéristiques":
|
299 |
-
st.
|
300 |
-
unsafe_allow_html=True)
|
301 |
|
|
|
|
|
302 |
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
|
303 |
st.pyplot(importance_fig)
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
app()
|
|
|
96 |
plt.title(f"Feature Importance - {model_type}")
|
97 |
return plt.gcf()
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def app():
|
100 |
+
st.title("Interpréteur de Modèles ML")
|
|
|
101 |
|
102 |
# Load data
|
103 |
X_train, y_train, X_test, y_test, feature_names = load_data()
|
104 |
|
105 |
# Train models if not in session state
|
106 |
if 'model_results' not in st.session_state:
|
107 |
+
with st.spinner("Entraînement des modèles en cours..."):
|
108 |
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
109 |
|
110 |
# Sidebar
|
111 |
+
st.sidebar.title("Navigation")
|
112 |
+
selected_model = st.sidebar.selectbox(
|
113 |
+
"Sélectionnez un modèle",
|
114 |
+
list(st.session_state.model_results.keys())
|
115 |
+
)
|
116 |
+
|
117 |
+
page = st.sidebar.radio(
|
118 |
+
"Sélectionnez une section",
|
119 |
+
["Performance des modèles",
|
120 |
+
"Interprétation du modèle",
|
121 |
+
"Analyse des caractéristiques",
|
122 |
+
"Simulateur de prédictions"]
|
123 |
+
)
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
current_model = st.session_state.model_results[selected_model]['model']
|
126 |
|
127 |
+
# Performance des modèles
|
128 |
if page == "Performance des modèles":
|
129 |
+
st.header("Performance des modèles")
|
|
|
130 |
|
131 |
+
# Plot global performance comparison
|
132 |
+
st.subheader("Comparaison des performances")
|
133 |
performance_fig = plot_model_performance(st.session_state.model_results)
|
134 |
st.pyplot(performance_fig)
|
135 |
|
136 |
+
# Detailed metrics for selected model
|
137 |
+
st.subheader(f"Métriques détaillées - {selected_model}")
|
|
|
138 |
col1, col2 = st.columns(2)
|
139 |
+
|
140 |
with col1:
|
141 |
+
st.write("Métriques d'entraînement:")
|
|
|
142 |
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
|
143 |
+
st.write(f"{metric}: {value:.4f}")
|
|
|
144 |
|
145 |
with col2:
|
146 |
+
st.write("Métriques de test:")
|
|
|
147 |
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
|
148 |
+
st.write(f"{metric}: {value:.4f}")
|
|
|
149 |
|
150 |
+
# Interprétation du modèle
|
151 |
+
elif page == "Interprétation du modèle":
|
152 |
+
st.header(f"Interprétation du modèle - {selected_model}")
|
153 |
+
|
154 |
+
if selected_model in ["Decision Tree", "Random Forest"]:
|
155 |
+
if selected_model == "Decision Tree":
|
156 |
+
st.subheader("Visualisation de l'arbre")
|
157 |
+
max_depth = st.slider("Profondeur maximale à afficher", 1, 5, 3)
|
158 |
+
fig, ax = plt.subplots(figsize=(20, 10))
|
159 |
+
plot_tree(current_model, feature_names=list(feature_names),
|
160 |
+
max_depth=max_depth, filled=True, rounded=True)
|
161 |
+
st.pyplot(fig)
|
162 |
+
|
163 |
+
st.subheader("Règles de décision importantes")
|
164 |
+
if selected_model == "Decision Tree":
|
165 |
+
st.text(export_text(current_model, feature_names=list(feature_names)))
|
166 |
+
|
167 |
+
# SHAP values for all models
|
168 |
+
st.subheader("SHAP Values")
|
169 |
+
with st.spinner("Calcul des valeurs SHAP en cours..."):
|
170 |
+
explainer = shap.TreeExplainer(current_model) if selected_model != "Logistic Regression" \
|
171 |
+
else shap.LinearExplainer(current_model, X_train)
|
172 |
+
shap_values = explainer.shap_values(X_train[:100]) # Using first 100 samples for speed
|
173 |
+
|
174 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
175 |
+
shap.summary_plot(shap_values, X_train[:100], feature_names=list(feature_names),
|
176 |
+
show=False)
|
177 |
+
st.pyplot(fig)
|
178 |
+
|
179 |
+
# Analyse des caractéristiques
|
180 |
elif page == "Analyse des caractéristiques":
|
181 |
+
st.header("Analyse des caractéristiques")
|
|
|
182 |
|
183 |
+
# Feature importance
|
184 |
+
st.subheader("Importance des caractéristiques")
|
185 |
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
|
186 |
st.pyplot(importance_fig)
|
187 |
|
188 |
+
# Feature correlation
|
189 |
+
st.subheader("Matrice de corrélation")
|
190 |
+
corr_matrix = X_train.corr()
|
191 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
192 |
+
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
|
193 |
+
st.pyplot(fig)
|
194 |
+
|
195 |
+
# Simulateur de prédictions
|
196 |
+
else:
|
197 |
+
st.header("Simulateur de prédictions")
|
198 |
+
|
199 |
+
input_values = {}
|
200 |
+
for feature in feature_names:
|
201 |
+
if X_train[feature].dtype == 'object':
|
202 |
+
input_values[feature] = st.selectbox(
|
203 |
+
f"Sélectionnez {feature}",
|
204 |
+
options=X_train[feature].unique()
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
input_values[feature] = st.slider(
|
208 |
+
f"Valeur pour {feature}",
|
209 |
+
float(X_train[feature].min()),
|
210 |
+
float(X_train[feature].max()),
|
211 |
+
float(X_train[feature].mean())
|
212 |
+
)
|
213 |
+
|
214 |
+
if st.button("Prédire"):
|
215 |
+
input_df = pd.DataFrame([input_values])
|
216 |
+
|
217 |
+
prediction = current_model.predict_proba(input_df)
|
218 |
+
|
219 |
+
st.write("Probabilités prédites:")
|
220 |
+
st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
|
221 |
+
|
222 |
+
if selected_model == "Decision Tree":
|
223 |
+
st.subheader("Chemin de décision")
|
224 |
+
node_indicator = current_model.decision_path(input_df)
|
225 |
+
leaf_id = current_model.apply(input_df)
|
226 |
+
|
227 |
+
node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
|
228 |
+
|
229 |
+
rules = []
|
230 |
+
for node_id in node_index:
|
231 |
+
if node_id != leaf_id[0]:
|
232 |
+
threshold = current_model.tree_.threshold[node_id]
|
233 |
+
feature = feature_names[current_model.tree_.feature[node_id]]
|
234 |
+
if input_df.iloc[0][feature] <= threshold:
|
235 |
+
rules.append(f"{feature} ≤ {threshold:.2f}")
|
236 |
+
else:
|
237 |
+
rules.append(f"{feature} > {threshold:.2f}")
|
238 |
+
|
239 |
+
for rule in rules:
|
240 |
+
st.write(rule)
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
app()
|