Gemma-Chat / app.py
amirgame197's picture
Update app.py
18fb827 verified
raw
history blame
6.42 kB
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
import random
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models = [
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it"
]
clients = [
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]
VERBOSE = False
def translate_to_english(prompt):
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
return translated_prompt
def translate_to_persian_text(response):
translated_response = GoogleTranslator(source='auto', target='fa').translate(response)
return translated_response
def load_models(inp):
if VERBOSE == True:
print(type(inp))
print(inp)
print(models[inp])
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = "<s>"
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn></s>"
if VERBOSE == True:
print(prompt)
prompt += cust_p.replace("USER_INPUT", message)
return prompt
def chat_inf(system_prompt, prompt, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian):
hist_len = 0
client = clients[int(client_choice) - 1]
if not history:
history = []
if not memory:
memory = []
if memory:
for ea in memory[0 - chat_mem:]:
hist_len += len(str(ea))
in_len = len(system_prompt + prompt) + hist_len
if (in_len + tokens) > 8000:
history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history, memory
else:
generate_kwargs = dict(
max_new_tokens=tokens,
)
if system_prompt:
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], custom_prompt)
else:
formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], custom_prompt)
translated_prompt = translate_to_english(formatted_prompt)
chat = [
{"role": "user", "content": f"{translated_prompt}"},
]
stream = client.text_generation(translated_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
if translate_to_persian:
output = translate_to_persian_text(output)
yield [(prompt, output)], memory
history.append((prompt, output))
memory.append((prompt, output))
yield history, memory
def clear_fn():
return None, None, None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp == True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
def chat_wrapper(sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox):
return chat_inf(sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox)
with gr.Blocks() as app:
memory = gr.State()
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn = gr.Button("Stop")
clear_btn = gr.Button("Clear")
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], interactive=True)
with gr.Accordion("Prompt Format", open=False):
custom_prompt = gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=5, value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Column(scale=1):
with gr.Group():
translate_to_persian_checkbox = gr.Checkbox(label="Translate to Persian", value=True)
rand = gr.Checkbox(label="Random Seed", value=True)
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens", value=1600, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
chat_mem = gr.Number(label="Chat Memory", info="Number of previous chats to retain", value=4)
client_choice.change(load_models, client_choice, [chat_b])
app.load(load_models, client_choice, [chat_b])
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_wrapper, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox]).then(chat_b.display, memory)
go = btn.click(check_rand, [rand, seed], seed).then(chat_wrapper, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox]).then(chat_b.display, memory)
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b, memory])
app.queue(default_concurrency_limit=10).launch()