import gradio as gr from gradio_client import Client from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator import random ss_client = Client("https://omnibus-html-image-current-tab.hf.space/") models = [ "google/gemma-7b", "google/gemma-7b-it", "google/gemma-2b", "google/gemma-2b-it" ] clients = [ InferenceClient(models[0]), InferenceClient(models[1]), InferenceClient(models[2]), InferenceClient(models[3]), ] VERBOSE = False def translate_to_english(prompt): translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt) return translated_prompt def translate_to_persian_text(response): translated_response = GoogleTranslator(source='auto', target='fa').translate(response) return translated_response def load_models(inp): if VERBOSE == True: print(type(inp)) print(inp) print(models[inp]) return gr.update(label=models[inp]) def format_prompt(message, history, cust_p): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" if VERBOSE == True: print(prompt) prompt += cust_p.replace("USER_INPUT", message) return prompt def chat_inf(system_prompt, prompt, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian): hist_len = 0 client = clients[int(client_choice) - 1] if not history: history = [] if not memory: memory = [] if memory: for ea in memory[0 - chat_mem:]: hist_len += len(str(ea)) in_len = len(system_prompt + prompt) + hist_len if (in_len + tokens) > 8000: history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value")) yield history, memory else: generate_kwargs = dict( max_new_tokens=tokens, ) if system_prompt: formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], custom_prompt) else: formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], custom_prompt) translated_prompt = translate_to_english(formatted_prompt) chat = [ {"role": "user", "content": f"{translated_prompt}"}, ] stream = client.text_generation(translated_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text if translate_to_persian: output = translate_to_persian_text(output) yield [(prompt, output)], memory history.append((prompt, output)) memory.append((prompt, output)) yield history, memory def clear_fn(): return None, None, None, None rand_val = random.randint(1, 1111111111111111) def check_rand(inp, val): if inp == True: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111)) else: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) def chat_wrapper(sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox): return chat_inf(sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox) with gr.Blocks() as app: memory = gr.State() chat_b = gr.Chatbot(height=500) with gr.Group(): with gr.Row(): with gr.Column(scale=3): inp = gr.Textbox(label="Prompt") sys_inp = gr.Textbox(label="System Prompt (optional)") with gr.Row(): with gr.Column(scale=2): btn = gr.Button("Chat") with gr.Column(scale=1): with gr.Group(): stop_btn = gr.Button("Stop") clear_btn = gr.Button("Clear") client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], interactive=True) with gr.Accordion("Prompt Format", open=False): custom_prompt = gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=5, value="userUSER_INPUTmodel") with gr.Column(scale=1): with gr.Group(): translate_to_persian_checkbox = gr.Checkbox(label="Translate to Persian", value=True) rand = gr.Checkbox(label="Random Seed", value=True) seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val) tokens = gr.Slider(label="Max new tokens", value=1600, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens") temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9) top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9) rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0) chat_mem = gr.Number(label="Chat Memory", info="Number of previous chats to retain", value=4) client_choice.change(load_models, client_choice, [chat_b]) app.load(load_models, client_choice, [chat_b]) chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_wrapper, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox]).then(chat_b.display, memory) go = btn.click(check_rand, [rand, seed], seed).then(chat_wrapper, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox]).then(chat_b.display, memory) clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b, memory]) app.queue(default_concurrency_limit=10).launch()