ameerazam08's picture
Update app.py
2142ea2 verified
raw
history blame
6.01 kB
# import torch
# import torchaudio
# from einops import rearrange
# import gradio as gr
# import spaces
# import os
# import uuid
# # Importing the model-related functions
# from stable_audio_tools import get_pretrained_model
# from stable_audio_tools.inference.generation import generate_diffusion_cond
# from huggingface_hub import login
# hf_token = os.getenv('HF_TOKEN')
# login(token=hf_token,add_to_git_credential=True)
# # Load the model outside of the GPU-decorated function
# def load_model():
# print("Loading model...")
# model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
# print("Model loaded successfully.")
# return model, model_config
# # Define the function to generate audio
# @spaces.GPU(duration=120)
# def generate_audio(prompt, bpm, seconds_total):
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Download model
# model, model_config = load_model()
# sample_rate = model_config["sample_rate"]
# sample_size = model_config["sample_size"]
# model = model.to(device)
# # Set up text and timing conditioning
# conditioning = [{
# "prompt": f"{bpm} BPM {prompt}",
# "seconds_start": 0,
# "seconds_total": seconds_total
# }]
# # Generate stereo audio
# output = generate_diffusion_cond(
# model,
# steps=100,
# cfg_scale=7,
# conditioning=conditioning,
# sample_size=sample_size,
# sigma_min=0.3,
# sigma_max=500,
# sampler_type="dpmpp-3m-sde",
# device=device
# )
# # Rearrange audio batch to a single sequence
# output = rearrange(output, "b d n -> d (b n)")
# # Peak normalize, clip, convert to int16, and save to file
# output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
# output_path = "output.wav"
# torchaudio.save(output_path, output, sample_rate)
# return output_path
# # Define the Gradio interface
# iface = gr.Interface(
# fn=generate_audio,
# inputs=[
# gr.Textbox(label="Prompt", placeholder="Enter the description of the audio (e.g., tech house drum loop)"),
# gr.Number(label="BPM", value=128),
# gr.Number(label="Duration (seconds)", value=30)
# ],
# outputs=gr.Audio(label="Generated Audio"),
# title="Stable Audio Generation",
# description="Generate audio based on a text prompt using stable audio tools.",
# )
# # Launch the interface
# iface.launch()
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Model loaded successfully.")
return model, model_config
# Function to set up, generate, and process the audio
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
# Setting up the Gradio Interface
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="Stable Audio Generator",
description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0."
)
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
interface.launch()