Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
from einops import rearrange
|
|
@@ -10,12 +94,6 @@ import uuid
|
|
| 10 |
from stable_audio_tools import get_pretrained_model
|
| 11 |
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
| 12 |
|
| 13 |
-
|
| 14 |
-
from huggingface_hub import login
|
| 15 |
-
|
| 16 |
-
hf_token = os.getenv('HF_TOKEN')
|
| 17 |
-
login(token=hf_token,add_to_git_credential=True)
|
| 18 |
-
|
| 19 |
# Load the model outside of the GPU-decorated function
|
| 20 |
def load_model():
|
| 21 |
print("Loading model...")
|
|
@@ -23,30 +101,43 @@ def load_model():
|
|
| 23 |
print("Model loaded successfully.")
|
| 24 |
return model, model_config
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
@spaces.GPU(duration=120)
|
| 28 |
-
def generate_audio(prompt,
|
|
|
|
|
|
|
|
|
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 30 |
|
| 31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
model, model_config = load_model()
|
| 33 |
sample_rate = model_config["sample_rate"]
|
| 34 |
sample_size = model_config["sample_size"]
|
| 35 |
|
|
|
|
|
|
|
| 36 |
model = model.to(device)
|
|
|
|
| 37 |
|
| 38 |
# Set up text and timing conditioning
|
| 39 |
conditioning = [{
|
| 40 |
-
"prompt":
|
| 41 |
"seconds_start": 0,
|
| 42 |
"seconds_total": seconds_total
|
| 43 |
}]
|
|
|
|
| 44 |
|
| 45 |
# Generate stereo audio
|
|
|
|
| 46 |
output = generate_diffusion_cond(
|
| 47 |
model,
|
| 48 |
-
steps=
|
| 49 |
-
cfg_scale=
|
| 50 |
conditioning=conditioning,
|
| 51 |
sample_size=sample_size,
|
| 52 |
sigma_min=0.3,
|
|
@@ -54,30 +145,44 @@ def generate_audio(prompt, bpm, seconds_total):
|
|
| 54 |
sampler_type="dpmpp-3m-sde",
|
| 55 |
device=device
|
| 56 |
)
|
|
|
|
| 57 |
|
| 58 |
# Rearrange audio batch to a single sequence
|
| 59 |
output = rearrange(output, "b d n -> d (b n)")
|
|
|
|
| 60 |
|
| 61 |
-
# Peak normalize, clip, convert to int16
|
| 62 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
fn=generate_audio,
|
| 72 |
inputs=[
|
| 73 |
-
gr.Textbox(label="Prompt", placeholder="Enter
|
| 74 |
-
gr.
|
| 75 |
-
gr.
|
|
|
|
| 76 |
],
|
| 77 |
-
outputs=gr.Audio(label="Generated Audio"),
|
| 78 |
-
title="Stable Audio
|
| 79 |
-
description="Generate audio
|
| 80 |
)
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# import torchaudio
|
| 3 |
+
# from einops import rearrange
|
| 4 |
+
# import gradio as gr
|
| 5 |
+
# import spaces
|
| 6 |
+
# import os
|
| 7 |
+
# import uuid
|
| 8 |
+
|
| 9 |
+
# # Importing the model-related functions
|
| 10 |
+
# from stable_audio_tools import get_pretrained_model
|
| 11 |
+
# from stable_audio_tools.inference.generation import generate_diffusion_cond
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# from huggingface_hub import login
|
| 15 |
+
|
| 16 |
+
# hf_token = os.getenv('HF_TOKEN')
|
| 17 |
+
# login(token=hf_token,add_to_git_credential=True)
|
| 18 |
+
|
| 19 |
+
# # Load the model outside of the GPU-decorated function
|
| 20 |
+
# def load_model():
|
| 21 |
+
# print("Loading model...")
|
| 22 |
+
# model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
| 23 |
+
# print("Model loaded successfully.")
|
| 24 |
+
# return model, model_config
|
| 25 |
+
|
| 26 |
+
# # Define the function to generate audio
|
| 27 |
+
# @spaces.GPU(duration=120)
|
| 28 |
+
# def generate_audio(prompt, bpm, seconds_total):
|
| 29 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
|
| 31 |
+
# # Download model
|
| 32 |
+
# model, model_config = load_model()
|
| 33 |
+
# sample_rate = model_config["sample_rate"]
|
| 34 |
+
# sample_size = model_config["sample_size"]
|
| 35 |
+
|
| 36 |
+
# model = model.to(device)
|
| 37 |
+
|
| 38 |
+
# # Set up text and timing conditioning
|
| 39 |
+
# conditioning = [{
|
| 40 |
+
# "prompt": f"{bpm} BPM {prompt}",
|
| 41 |
+
# "seconds_start": 0,
|
| 42 |
+
# "seconds_total": seconds_total
|
| 43 |
+
# }]
|
| 44 |
+
|
| 45 |
+
# # Generate stereo audio
|
| 46 |
+
# output = generate_diffusion_cond(
|
| 47 |
+
# model,
|
| 48 |
+
# steps=100,
|
| 49 |
+
# cfg_scale=7,
|
| 50 |
+
# conditioning=conditioning,
|
| 51 |
+
# sample_size=sample_size,
|
| 52 |
+
# sigma_min=0.3,
|
| 53 |
+
# sigma_max=500,
|
| 54 |
+
# sampler_type="dpmpp-3m-sde",
|
| 55 |
+
# device=device
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
+
# # Rearrange audio batch to a single sequence
|
| 59 |
+
# output = rearrange(output, "b d n -> d (b n)")
|
| 60 |
+
|
| 61 |
+
# # Peak normalize, clip, convert to int16, and save to file
|
| 62 |
+
# output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 63 |
+
|
| 64 |
+
# output_path = "output.wav"
|
| 65 |
+
# torchaudio.save(output_path, output, sample_rate)
|
| 66 |
+
|
| 67 |
+
# return output_path
|
| 68 |
+
|
| 69 |
+
# # Define the Gradio interface
|
| 70 |
+
# iface = gr.Interface(
|
| 71 |
+
# fn=generate_audio,
|
| 72 |
+
# inputs=[
|
| 73 |
+
# gr.Textbox(label="Prompt", placeholder="Enter the description of the audio (e.g., tech house drum loop)"),
|
| 74 |
+
# gr.Number(label="BPM", value=128),
|
| 75 |
+
# gr.Number(label="Duration (seconds)", value=30)
|
| 76 |
+
# ],
|
| 77 |
+
# outputs=gr.Audio(label="Generated Audio"),
|
| 78 |
+
# title="Stable Audio Generation",
|
| 79 |
+
# description="Generate audio based on a text prompt using stable audio tools.",
|
| 80 |
+
# )
|
| 81 |
+
|
| 82 |
+
# # Launch the interface
|
| 83 |
+
# iface.launch()
|
| 84 |
+
|
| 85 |
import torch
|
| 86 |
import torchaudio
|
| 87 |
from einops import rearrange
|
|
|
|
| 94 |
from stable_audio_tools import get_pretrained_model
|
| 95 |
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
# Load the model outside of the GPU-decorated function
|
| 98 |
def load_model():
|
| 99 |
print("Loading model...")
|
|
|
|
| 101 |
print("Model loaded successfully.")
|
| 102 |
return model, model_config
|
| 103 |
|
| 104 |
+
# Function to set up, generate, and process the audio
|
| 105 |
+
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
| 106 |
+
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
| 107 |
+
print(f"Prompt received: {prompt}")
|
| 108 |
+
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
|
| 109 |
+
|
| 110 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 111 |
+
print(f"Using device: {device}")
|
| 112 |
|
| 113 |
+
# Fetch the Hugging Face token from the environment variable
|
| 114 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 115 |
+
print(f"Hugging Face token: {hf_token}")
|
| 116 |
+
|
| 117 |
+
# Use pre-loaded model and configuration
|
| 118 |
model, model_config = load_model()
|
| 119 |
sample_rate = model_config["sample_rate"]
|
| 120 |
sample_size = model_config["sample_size"]
|
| 121 |
|
| 122 |
+
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
|
| 123 |
+
|
| 124 |
model = model.to(device)
|
| 125 |
+
print("Model moved to device.")
|
| 126 |
|
| 127 |
# Set up text and timing conditioning
|
| 128 |
conditioning = [{
|
| 129 |
+
"prompt": prompt,
|
| 130 |
"seconds_start": 0,
|
| 131 |
"seconds_total": seconds_total
|
| 132 |
}]
|
| 133 |
+
print(f"Conditioning: {conditioning}")
|
| 134 |
|
| 135 |
# Generate stereo audio
|
| 136 |
+
print("Generating audio...")
|
| 137 |
output = generate_diffusion_cond(
|
| 138 |
model,
|
| 139 |
+
steps=steps,
|
| 140 |
+
cfg_scale=cfg_scale,
|
| 141 |
conditioning=conditioning,
|
| 142 |
sample_size=sample_size,
|
| 143 |
sigma_min=0.3,
|
|
|
|
| 145 |
sampler_type="dpmpp-3m-sde",
|
| 146 |
device=device
|
| 147 |
)
|
| 148 |
+
print("Audio generated.")
|
| 149 |
|
| 150 |
# Rearrange audio batch to a single sequence
|
| 151 |
output = rearrange(output, "b d n -> d (b n)")
|
| 152 |
+
print("Audio rearranged.")
|
| 153 |
|
| 154 |
+
# Peak normalize, clip, convert to int16
|
| 155 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 156 |
+
print("Audio normalized and converted.")
|
| 157 |
+
|
| 158 |
+
# Generate a unique filename for the output
|
| 159 |
+
unique_filename = f"output_{uuid.uuid4().hex}.wav"
|
| 160 |
+
print(f"Saving audio to file: {unique_filename}")
|
| 161 |
+
|
| 162 |
+
# Save to file
|
| 163 |
+
torchaudio.save(unique_filename, output, sample_rate)
|
| 164 |
+
print(f"Audio saved: {unique_filename}")
|
| 165 |
|
| 166 |
+
# Return the path to the generated audio file
|
| 167 |
+
return unique_filename
|
| 168 |
+
|
| 169 |
+
# Setting up the Gradio Interface
|
| 170 |
+
interface = gr.Interface(
|
| 171 |
fn=generate_audio,
|
| 172 |
inputs=[
|
| 173 |
+
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
|
| 174 |
+
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
|
| 175 |
+
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
|
| 176 |
+
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
|
| 177 |
],
|
| 178 |
+
outputs=gr.Audio(type="filepath", label="Generated Audio"),
|
| 179 |
+
title="Stable Audio Generator",
|
| 180 |
+
description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0."
|
| 181 |
)
|
| 182 |
|
| 183 |
+
# Pre-load the model to avoid multiprocessing issues
|
| 184 |
+
model, model_config = load_model()
|
| 185 |
+
|
| 186 |
+
# Launch the Interface
|
| 187 |
+
interface.launch()
|
| 188 |
+
|