Ubuntu
Add two translation models for the app
82da87b
raw
history blame
3.02 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load both translation models from Hugging Face
# English to Moroccan Arabic (Darija)
tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA")
model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA")
# Moroccan Arabic (Darija) to Modern Standard Arabic (MSA)
tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic")
model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
translation_choice: str,
):
"""
Responds to the input message by selecting the translation model based on the user's choice.
"""
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]: # User message
messages.append({"role": "user", "content": val[0]})
if val[1]: # Assistant message
messages.append({"role": "assistant", "content": val[1]})
# Append the user message
messages.append({"role": "user", "content": message})
# Initialize the response variable
response = ""
# Translate based on the user's choice
if translation_choice == "Moroccan Arabic to MSA":
# Translate Moroccan Arabic (Darija) to Modern Standard Arabic
inputs = tokenizer_darija_to_msa(message, return_tensors="pt", padding=True)
outputs = model_darija_to_msa.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True)
response = tokenizer_darija_to_msa.decode(outputs[0], skip_special_tokens=True)
elif translation_choice == "English to Moroccan Arabic":
# Translate English to Moroccan Arabic (Darija)
inputs = tokenizer_eng_to_darija(message, return_tensors="pt", padding=True)
outputs = model_eng_to_darija.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True)
response = tokenizer_eng_to_darija.decode(outputs[0], skip_special_tokens=True)
return response
# Gradio interface setup
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.Dropdown(
label="Choose Translation Direction",
choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"],
value="English to Moroccan Arabic"
),
],
)
if __name__ == "__main__":
demo.launch()