Ubuntu commited on
Commit
82da87b
·
1 Parent(s): 38cdb19

Add two translation models for the app

Browse files
Files changed (2) hide show
  1. app.py +36 -26
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,11 +1,15 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -14,51 +18,57 @@ def respond(
14
  max_tokens,
15
  temperature,
16
  top_p,
 
17
  ):
 
 
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
21
- if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
 
28
  response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
 
5
+ # Load both translation models from Hugging Face
6
+ # English to Moroccan Arabic (Darija)
7
+ tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA")
8
+ model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA")
9
 
10
+ # Moroccan Arabic (Darija) to Modern Standard Arabic (MSA)
11
+ tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic")
12
+ model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic")
13
 
14
  def respond(
15
  message,
 
18
  max_tokens,
19
  temperature,
20
  top_p,
21
+ translation_choice: str,
22
  ):
23
+ """
24
+ Responds to the input message by selecting the translation model based on the user's choice.
25
+ """
26
  messages = [{"role": "system", "content": system_message}]
27
 
28
  for val in history:
29
+ if val[0]: # User message
30
  messages.append({"role": "user", "content": val[0]})
31
+ if val[1]: # Assistant message
32
  messages.append({"role": "assistant", "content": val[1]})
33
 
34
+ # Append the user message
35
  messages.append({"role": "user", "content": message})
36
 
37
+ # Initialize the response variable
38
  response = ""
39
 
40
+ # Translate based on the user's choice
41
+ if translation_choice == "Moroccan Arabic to MSA":
42
+ # Translate Moroccan Arabic (Darija) to Modern Standard Arabic
43
+ inputs = tokenizer_darija_to_msa(message, return_tensors="pt", padding=True)
44
+ outputs = model_darija_to_msa.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True)
45
+ response = tokenizer_darija_to_msa.decode(outputs[0], skip_special_tokens=True)
 
 
46
 
47
+ elif translation_choice == "English to Moroccan Arabic":
48
+ # Translate English to Moroccan Arabic (Darija)
49
+ inputs = tokenizer_eng_to_darija(message, return_tensors="pt", padding=True)
50
+ outputs = model_eng_to_darija.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True)
51
+ response = tokenizer_eng_to_darija.decode(outputs[0], skip_special_tokens=True)
52
 
53
+ return response
54
 
55
+
56
+ # Gradio interface setup
 
57
  demo = gr.ChatInterface(
58
  respond,
59
  additional_inputs=[
60
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
61
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
62
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
63
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
64
+ gr.Dropdown(
65
+ label="Choose Translation Direction",
66
+ choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"],
67
+ value="English to Moroccan Arabic"
 
68
  ),
69
  ],
70
  )
71
 
 
72
  if __name__ == "__main__":
73
  demo.launch()
74
+
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio
3
+ transformers
4
+ torch