Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load both translation models from Hugging Face | |
# English to Moroccan Arabic (Darija) | |
tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") | |
model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") | |
# Moroccan Arabic (Darija) to Modern Standard Arabic (MSA) | |
tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") | |
model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
translation_choice: str, | |
): | |
""" | |
Responds to the input message by selecting the translation model based on the user's choice. | |
""" | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: # User message | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: # Assistant message | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Append the user message | |
messages.append({"role": "user", "content": message}) | |
# Initialize the response variable | |
response = "" | |
# Translate based on the user's choice | |
if translation_choice == "Moroccan Arabic to MSA": | |
# Translate Moroccan Arabic (Darija) to Modern Standard Arabic | |
inputs = tokenizer_darija_to_msa(message, return_tensors="pt", padding=True) | |
outputs = model_darija_to_msa.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True) | |
response = tokenizer_darija_to_msa.decode(outputs[0], skip_special_tokens=True) | |
elif translation_choice == "English to Moroccan Arabic": | |
# Translate English to Moroccan Arabic (Darija) | |
inputs = tokenizer_eng_to_darija(message, return_tensors="pt", padding=True) | |
outputs = model_eng_to_darija.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True) | |
response = tokenizer_eng_to_darija.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Gradio interface setup | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
gr.Dropdown( | |
label="Choose Translation Direction", | |
choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"], | |
value="English to Moroccan Arabic" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |