File size: 2,565 Bytes
15678e0
82da87b
15678e0
82da87b
 
d8c4e42
 
15678e0
82da87b
d8c4e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82da87b
d8c4e42
 
 
 
15678e0
 
419f944
 
 
a26be94
82da87b
 
 
 
15678e0
 
419f944
15678e0
 
419f944
 
d8c4e42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load both translation models from Hugging Face
# English to Moroccan Arabic (Darija)
tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic")
model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic")

# Moroccan Arabic (Darija) to Modern Standard Arabic (MSA)
tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA")
model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA")

# Translation function for Darija to MSA
def translate_darija_to_msa(darija_text):
    inputs = tokenizer_darija_to_msa(darija_text, return_tensors="pt", padding=True)
    translated = model_darija_to_msa.generate(**inputs)
    translated_text = tokenizer_darija_to_msa.decode(translated[0], skip_special_tokens=True)
    return translated_text

# Translation function for English to Moroccan Arabic and vice versa
def translate_eng_to_darija(eng_text, direction="eng_to_darija"):
    if direction == "eng_to_darija":
        inputs = tokenizer_eng_to_darija(eng_text, return_tensors="pt", padding=True)
        translated = model_eng_to_darija.generate(**inputs)
        translated_text = tokenizer_eng_to_darija.decode(translated[0], skip_special_tokens=True)
    else:
        # Translate from Darija to English (reverse translation)
        inputs = tokenizer_eng_to_darija(eng_text, return_tensors="pt", padding=True)
        translated = model_eng_to_darija.generate(**inputs)
        translated_text = tokenizer_eng_to_darija.decode(translated[0], skip_special_tokens=True)
    return translated_text


# Gradio interface setup without max new tokens
def respond(message, translation_choice: str):
    # Translate based on the user's choice
    if translation_choice == "Moroccan Arabic to MSA":
        return translate_darija_to_msa(message)
    elif translation_choice == "English to Moroccan Arabic":
        return translate_eng_to_darija(message, direction="eng_to_darija")


demo = gr.Interface(
    fn=respond,
    inputs=[
        gr.Textbox(value="", label="Enter Your Text", placeholder="Type your sentence here..."),
        gr.Dropdown(
            label="Choose Translation Direction",
            choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"],
            value="English to Moroccan Arabic"
        ),
    ],
    outputs="text"
)

# Launch the interface
demo.launch()