Spaces:
Sleeping
Sleeping
File size: 1,827 Bytes
43e3ffb 250e4dc fa10c3d 250e4dc fa10c3d b0e7b5d 250e4dc 699b778 b0e7b5d fa10c3d b0e7b5d fa10c3d 699b778 fa10c3d b0e7b5d 699b778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# tahmin çıktılarında date kolonu sadece yyyy/mm/dd şeklinde yap
from dotenv import load_dotenv
import os
from sklearn.metrics import r2_score
load_dotenv('.env')
class Config():
def __init__(self):
pass
MJ_APIKEY_PUBLIC = os.getenv('MJ_APIKEY_PUBLIC')
MJ_APIKEY_PRIVATE = os.getenv('MJ_APIKEY_PRIVATE')
target = 'demand'
split_local_test = False
not_include_features = [
target,
'date'
]
cat_features = [
'product_id',
'product_application',
'product_marketing_name',
'product_main_family',
'planning_method_latest'
]
scorer = r2_score
model_type = 'CATBOOST'
fold = 5
fold_models_directory = 'models/date_models_test'
fold_input_directory = 'maps/date_models_test'
result_path = 'demand_predictions/'
catboost_params = {
'learning_rate': 0.03,
'objective':'RMSE',
'depth': 5,
'early_stopping_rounds':200,
'iterations': 2000,
'use_best_model': True,
# 'eval_metric': CatBoostEvalMetricSMAPE(),
'eval_metric': 'R2',
'random_state': 42,
'allow_writing_files': False,
'thread_count':-1
}
# deployment
MAIN_TITLE = 'Infineon Product Demand Forecasting System'
SUB_TITLE = 'Data Analytics in Applications'
ICON_PATH = 'images/infineon-icon-1.png'
FORECAST_START_DATE = '01-11-2023'
FORECAST_END_DATE = '01-07-2024'
FORECAST_BUTTON_TEXT = 'Predict'
LINE_PLOT_SELECTBOX_TEXT = 'Filter at product level'
BAR_PLOT_SELECTBOX_TEXT = 'Filter at category level'
SAVE_CHECKBOX_TEXT = 'Save predictions'
SAVE_BUTTON_TEXT = 'Apply'
SAVE_BUTTON_SUCCESS_TEXT = 'Successfully Applied!' |