Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +129 -0
- config.py +36 -0
- images/infineon-icon-1.png +0 -0
- images/infineon-icon-2.webp +0 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# external libraries
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import datetime
|
7 |
+
|
8 |
+
from config import Config
|
9 |
+
|
10 |
+
config = vars(Config)
|
11 |
+
|
12 |
+
def main():
|
13 |
+
|
14 |
+
# variables
|
15 |
+
if "state" not in st.session_state:
|
16 |
+
st.session_state["state"] = True
|
17 |
+
st.session_state["predictions_df"] = pd.DataFrame()
|
18 |
+
|
19 |
+
st.set_page_config(
|
20 |
+
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
21 |
+
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed"
|
22 |
+
page_title=config['MAIN_TITLE'], # String or None. Strings get appended with "• Streamlit".
|
23 |
+
page_icon=config['ICON_PATH'], # String, anything supported by st.image, or None.
|
24 |
+
)
|
25 |
+
|
26 |
+
col1, col2, col3 = st.columns(3)
|
27 |
+
col1.write(' ')
|
28 |
+
col2.image(config['ICON_PATH'])
|
29 |
+
col3.write(' ')
|
30 |
+
|
31 |
+
st.markdown(f"<h1 style='text-align: center;'>{config['MAIN_TITLE']}</h1>", unsafe_allow_html=True)
|
32 |
+
st.markdown(f"<h3 style='text-align: center;'>{config['SUB_TITLE']}</h3>", unsafe_allow_html=True)
|
33 |
+
|
34 |
+
if st.session_state["state"]:
|
35 |
+
|
36 |
+
dates = get_forecasting_horizon(config['FORECAST_START_DATE'],config['FORECAST_END_DATE'])
|
37 |
+
|
38 |
+
col1, col2= st.columns([100,1])
|
39 |
+
input_date = col1.slider(
|
40 |
+
"Forecast Interval", dates[0].date(), dates[-1].date(),
|
41 |
+
value=(dates[0].date(),dates[0].date() + datetime.timedelta(weeks=12)),
|
42 |
+
step=datetime.timedelta(weeks=4))
|
43 |
+
|
44 |
+
col1, col2, col3 , col4, col5 = st.columns(5)
|
45 |
+
with col3 :
|
46 |
+
center_button = st.button(config['FORECAST_BUTTON_TEXT'], on_click=predict, args=(input_date,))
|
47 |
+
|
48 |
+
|
49 |
+
if not st.session_state["predictions_df"].empty:
|
50 |
+
|
51 |
+
pid = st.selectbox(config['LINE_PLOT_SELECTBOX_TEXT'],st.session_state["predictions_df"]['product_id'].unique())
|
52 |
+
|
53 |
+
st.table(st.session_state["predictions_df"].loc[st.session_state["predictions_df"]['product_id'] == pid,['product_id','date','demand']][:10])
|
54 |
+
|
55 |
+
st.write(f"Monthly demand for the product {pid}")
|
56 |
+
st.line_chart(st.session_state["predictions_df"].loc[st.session_state["predictions_df"]['product_id'] == pid,:],
|
57 |
+
x="date", y="demand", use_container_width=True)
|
58 |
+
|
59 |
+
category = st.selectbox(config['BAR_PLOT_SELECTBOX_TEXT'],['product_application',
|
60 |
+
'product_marketing_name',
|
61 |
+
'product_main_family',
|
62 |
+
'planning_method_latest'])
|
63 |
+
|
64 |
+
st.write(f'Average demand by category "{category}"')
|
65 |
+
st.bar_chart(st.session_state["predictions_df"].loc[st.session_state["predictions_df"]['product_id'] == pid,:].groupby(category)['demand'].mean())
|
66 |
+
|
67 |
+
input_save = st.checkbox(config['SAVE_CHECKBOX_TEXT'])
|
68 |
+
confirm_params = {
|
69 |
+
'input_save':input_save
|
70 |
+
}
|
71 |
+
|
72 |
+
confirm = st.button(config['SAVE_BUTTON_TEXT'], on_click=save, args=(confirm_params,))
|
73 |
+
if confirm:
|
74 |
+
st.success(config['SAVE_BUTTON_SUCCESS_TEXT'])
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
def get_forecasting_horizon(start_date, end_date):
|
81 |
+
horizon = pd.date_range(start_date,
|
82 |
+
end_date,
|
83 |
+
freq='MS')
|
84 |
+
return horizon
|
85 |
+
|
86 |
+
# saving results
|
87 |
+
def save(params):
|
88 |
+
|
89 |
+
dir = 'demand_predictions'
|
90 |
+
if not os.path.exists(f'{dir}'):
|
91 |
+
os.makedirs(f'{dir}')
|
92 |
+
|
93 |
+
if params['input_save']:
|
94 |
+
today = datetime.datetime.today().strftime("%d-%m-%Y")
|
95 |
+
st.session_state["predictions_df"].to_excel(f'{dir}/predictions_{today}.xlsx', index=False)
|
96 |
+
|
97 |
+
|
98 |
+
# forecasting
|
99 |
+
def predict(input_date):
|
100 |
+
|
101 |
+
data = {
|
102 |
+
'product_id': [f'P{1}' for i in range(5)],
|
103 |
+
'date':['2022-01-01','2022-02-01','2022-03-01','2022-04-01','2022-05-01'],
|
104 |
+
'demand': np.random.randint(1, 100, size=5),
|
105 |
+
'product_application': ['A','A','A','B','B']
|
106 |
+
}
|
107 |
+
|
108 |
+
data2 = {
|
109 |
+
'product_id': [f'P{2}' for i in range(5)],
|
110 |
+
'date':['2022-01-01','2022-02-01','2022-03-01','2022-04-01','2022-05-01'],
|
111 |
+
'demand': np.random.randint(1, 100, size=5),
|
112 |
+
'product_application': ['A','A','A','B','B']
|
113 |
+
}
|
114 |
+
|
115 |
+
df1 = pd.DataFrame(data)
|
116 |
+
df2 = pd.DataFrame(data2)
|
117 |
+
|
118 |
+
# Concatenate the two DataFrames vertically
|
119 |
+
combined_df = pd.concat([df1, df2], ignore_index=True)
|
120 |
+
|
121 |
+
|
122 |
+
forecast_start_date = input_date[0].strftime("%Y-%m-%d")
|
123 |
+
forecast_end_date = input_date[1].strftime("%Y-%m-%d")
|
124 |
+
print(forecast_start_date, forecast_end_date)
|
125 |
+
|
126 |
+
st.session_state["predictions_df"] = combined_df
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
main()
|
config.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Config():
|
2 |
+
|
3 |
+
def __init__(self):
|
4 |
+
pass
|
5 |
+
|
6 |
+
target = 'demand'
|
7 |
+
|
8 |
+
not_include_features = [
|
9 |
+
target,
|
10 |
+
'date'
|
11 |
+
]
|
12 |
+
|
13 |
+
cat_features = [
|
14 |
+
'product_id',
|
15 |
+
'product_application',
|
16 |
+
'product_marketing_name',
|
17 |
+
'product_main_family',
|
18 |
+
'planning_method_latest'
|
19 |
+
]
|
20 |
+
|
21 |
+
# production
|
22 |
+
MAIN_TITLE = 'Infineon Product Demand Forecasting System'
|
23 |
+
SUB_TITLE = 'Data Analytics in Applications'
|
24 |
+
ICON_PATH = 'images/infineon-icon-1.png'
|
25 |
+
|
26 |
+
FORECAST_START_DATE = '01-11-2023'
|
27 |
+
FORECAST_END_DATE = '01-07-2024'
|
28 |
+
|
29 |
+
FORECAST_BUTTON_TEXT = 'Predict'
|
30 |
+
|
31 |
+
LINE_PLOT_SELECTBOX_TEXT = 'Filter at product level'
|
32 |
+
BAR_PLOT_SELECTBOX_TEXT = 'Filter at category level'
|
33 |
+
|
34 |
+
SAVE_CHECKBOX_TEXT = 'Save predictions'
|
35 |
+
SAVE_BUTTON_TEXT = 'Apply'
|
36 |
+
SAVE_BUTTON_SUCCESS_TEXT = 'File successfully saved'
|
images/infineon-icon-1.png
ADDED
![]() |
images/infineon-icon-2.webp
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.24.3
|
2 |
+
pandas==2.0.0
|
3 |
+
streamlit==1.23.1
|