Update app.py
Browse files
app.py
CHANGED
@@ -214,8 +214,6 @@
|
|
214 |
# if __name__ == "__main__":
|
215 |
# main()
|
216 |
|
217 |
-
|
218 |
-
|
219 |
# %%writefile app.py
|
220 |
|
221 |
import streamlit as st
|
@@ -273,5 +271,182 @@ def train(net, trainloader, epochs):
|
|
273 |
optimizer.step()
|
274 |
optimizer.zero_grad()
|
275 |
|
276 |
-
def test(net, testloader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
|
|
214 |
# if __name__ == "__main__":
|
215 |
# main()
|
216 |
|
|
|
|
|
217 |
# %%writefile app.py
|
218 |
|
219 |
import streamlit as st
|
|
|
271 |
optimizer.step()
|
272 |
optimizer.zero_grad()
|
273 |
|
274 |
+
def test(net, testloader):
|
275 |
+
metric = load_metric("accuracy")
|
276 |
+
net.eval()
|
277 |
+
loss = 0
|
278 |
+
for batch in testloader:
|
279 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
280 |
+
with torch.no_grad():
|
281 |
+
outputs = net(**batch)
|
282 |
+
logits = outputs.logits
|
283 |
+
loss += outputs.loss.item()
|
284 |
+
predictions = torch.argmax(logits, dim=-1)
|
285 |
+
metric.add_batch(predictions=predictions, references=batch["labels"])
|
286 |
+
loss /= len(testloader)
|
287 |
+
accuracy = metric.compute()["accuracy"]
|
288 |
+
return loss, accuracy
|
289 |
+
|
290 |
+
class CustomClient(fl.client.NumPyClient):
|
291 |
+
def __init__(self, net, trainloader, testloader, client_id):
|
292 |
+
self.net = net
|
293 |
+
self.trainloader = trainloader
|
294 |
+
self.testloader = testloader
|
295 |
+
self.client_id = client_id
|
296 |
+
self.losses = []
|
297 |
+
self.accuracies = []
|
298 |
+
|
299 |
+
def get_parameters(self, config):
|
300 |
+
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
301 |
+
|
302 |
+
def set_parameters(self, parameters):
|
303 |
+
params_dict = zip(self.net.state_dict().keys(), parameters)
|
304 |
+
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
305 |
+
self.net.load_state_dict(state_dict, strict=True)
|
306 |
+
|
307 |
+
def fit(self, parameters, config):
|
308 |
+
log(INFO, f"Client {self.client_id} is starting fit()")
|
309 |
+
self.set_parameters(parameters)
|
310 |
+
train(self.net, self.trainloader, epochs=1)
|
311 |
+
loss, accuracy = test(self.net, self.testloader)
|
312 |
+
self.losses.append(loss)
|
313 |
+
self.accuracies.append(accuracy)
|
314 |
+
log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
315 |
+
return self.get_parameters(config={}), len(self.trainloader.dataset), {"loss": loss, "accuracy": accuracy}
|
316 |
+
|
317 |
+
def evaluate(self, parameters, config):
|
318 |
+
log(INFO, f"Client {self.client_id} is starting evaluate()")
|
319 |
+
self.set_parameters(parameters)
|
320 |
+
loss, accuracy = test(self.net, self.testloader)
|
321 |
+
log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
322 |
+
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy), "loss": float(loss)}
|
323 |
+
|
324 |
+
def plot_metrics(self, round_num, plot_placeholder):
|
325 |
+
if self.losses and self.accuracies:
|
326 |
+
plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
327 |
+
plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
|
328 |
+
plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
329 |
+
|
330 |
+
fig, ax1 = plt.subplots()
|
331 |
+
|
332 |
+
color = 'tab:red'
|
333 |
+
ax1.set_xlabel('Round')
|
334 |
+
ax1.set_ylabel('Loss', color=color)
|
335 |
+
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
|
336 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
337 |
+
|
338 |
+
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
339 |
+
color = 'tab:blue'
|
340 |
+
ax2.set_ylabel('Accuracy', color=color)
|
341 |
+
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
|
342 |
+
ax2.tick_params(axis='y', labelcolor=color)
|
343 |
+
|
344 |
+
fig.tight_layout()
|
345 |
+
plot_placeholder.pyplot(fig)
|
346 |
+
|
347 |
+
def read_log_file():
|
348 |
+
with open("log.txt", "r") as file:
|
349 |
+
return file.read()
|
350 |
+
|
351 |
+
def main():
|
352 |
+
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
353 |
+
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
354 |
+
model_name = st.selectbox("Model", ["bert-base-uncased", "facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
355 |
+
|
356 |
+
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
357 |
+
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
358 |
+
|
359 |
+
train_datasets, test_datasets, data_collator, raw_datasets = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
360 |
+
|
361 |
+
trainloaders = []
|
362 |
+
testloaders = []
|
363 |
+
clients = []
|
364 |
+
|
365 |
+
for i in range(NUM_CLIENTS):
|
366 |
+
st.write(f"### Client {i+1} Datasets")
|
367 |
+
|
368 |
+
train_df = pd.DataFrame(train_datasets[i])
|
369 |
+
test_df = pd.DataFrame(test_datasets[i])
|
370 |
+
|
371 |
+
st.write("#### Train Dataset (Words)")
|
372 |
+
st.dataframe(raw_datasets["train"].select(random.sample(range(len(raw_datasets["train"])), 20)))
|
373 |
+
st.write("#### Train Dataset (Tokens)")
|
374 |
+
edited_train_df = st.data_editor(train_df, key=f"train_{i}")
|
375 |
+
|
376 |
+
st.write("#### Test Dataset (Words)")
|
377 |
+
st.dataframe(raw_datasets["test"].select(random.sample(range(len(raw_datasets["test"])), 20)))
|
378 |
+
st.write("#### Test Dataset (Tokens)")
|
379 |
+
edited_test_df = st.data_editor(test_df, key=f"test_{i}")
|
380 |
+
|
381 |
+
edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
382 |
+
edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
383 |
+
|
384 |
+
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
385 |
+
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
386 |
+
|
387 |
+
trainloaders.append(trainloader)
|
388 |
+
testloaders.append(testloader)
|
389 |
+
|
390 |
+
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
391 |
+
client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
392 |
+
clients.append(client)
|
393 |
+
|
394 |
+
if st.button("Start Training"):
|
395 |
+
def client_fn(cid):
|
396 |
+
return clients[int(cid)]
|
397 |
+
|
398 |
+
def weighted_average(metrics):
|
399 |
+
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
400 |
+
losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
401 |
+
examples = [num_examples for num_examples, _ in metrics]
|
402 |
+
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
403 |
+
|
404 |
+
strategy = fl.server.strategy.FedAvg(
|
405 |
+
fraction_fit=1.0,
|
406 |
+
fraction_evaluate=1.0,
|
407 |
+
evaluate_metrics_aggregation_fn=weighted_average,
|
408 |
+
)
|
409 |
+
|
410 |
+
for round_num in range(NUM_ROUNDS):
|
411 |
+
st.write(f"### Round {round_num + 1}")
|
412 |
+
plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
413 |
+
|
414 |
+
fl.simulation.start_simulation(
|
415 |
+
client_fn=client_fn,
|
416 |
+
num_clients=NUM_CLIENTS,
|
417 |
+
config=fl.server.ServerConfig(num_rounds=1),
|
418 |
+
strategy=strategy,
|
419 |
+
client_resources={"num_cpus": 1, "num_gpus": 0},
|
420 |
+
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
421 |
+
)
|
422 |
+
|
423 |
+
for i, client in enumerate(clients):
|
424 |
+
client.plot_metrics(round_num + 1, plot_placeholders[i])
|
425 |
+
st.write(" ")
|
426 |
+
|
427 |
+
st.success("Training completed successfully!")
|
428 |
+
|
429 |
+
# Display final metrics
|
430 |
+
st.write("## Final Client Metrics")
|
431 |
+
for client in clients:
|
432 |
+
st.write(f"### Client {client.client_id}")
|
433 |
+
if client.losses and client.accuracies:
|
434 |
+
st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
435 |
+
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
436 |
+
client.plot_metrics(NUM_ROUNDS, st.empty())
|
437 |
+
else:
|
438 |
+
st.write("No metrics available.")
|
439 |
+
|
440 |
+
st.write(" ")
|
441 |
+
|
442 |
+
# Display log.txt content
|
443 |
+
st.write("## Training Log")
|
444 |
+
st.text(read_log_file())
|
445 |
+
|
446 |
+
else:
|
447 |
+
st.write("Click the 'Start Training' button to start the training process.")
|
448 |
+
|
449 |
+
if __name__ == "__main__":
|
450 |
+
main()
|
451 |
+
|
452 |
|