Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# # %%writefile app.py
|
2 |
|
3 |
# import streamlit as st
|
@@ -11,6 +228,8 @@
|
|
11 |
# import random
|
12 |
# from collections import OrderedDict
|
13 |
# import flwr as fl
|
|
|
|
|
14 |
|
15 |
# DEVICE = torch.device("cpu")
|
16 |
|
@@ -87,16 +306,20 @@
|
|
87 |
# self.net.load_state_dict(state_dict, strict=True)
|
88 |
|
89 |
# def fit(self, parameters, config):
|
|
|
90 |
# self.set_parameters(parameters)
|
91 |
# train(self.net, self.trainloader, epochs=1)
|
92 |
# loss, accuracy = test(self.net, self.testloader)
|
93 |
# self.losses.append(loss)
|
94 |
# self.accuracies.append(accuracy)
|
|
|
95 |
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
96 |
|
97 |
# def evaluate(self, parameters, config):
|
|
|
98 |
# self.set_parameters(parameters)
|
99 |
# loss, accuracy = test(self.net, self.testloader)
|
|
|
100 |
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
101 |
|
102 |
# def plot_metrics(self, round_num, plot_placeholder):
|
@@ -122,10 +345,14 @@
|
|
122 |
# fig.tight_layout()
|
123 |
# plot_placeholder.pyplot(fig)
|
124 |
|
|
|
|
|
|
|
|
|
125 |
# def main():
|
126 |
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
127 |
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
128 |
-
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
129 |
|
130 |
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
131 |
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
@@ -204,239 +431,16 @@
|
|
204 |
# client.plot_metrics(NUM_ROUNDS, st.empty())
|
205 |
# st.write(" ")
|
206 |
|
|
|
|
|
|
|
|
|
207 |
# else:
|
208 |
# st.write("Click the 'Start Training' button to start the training process.")
|
209 |
|
210 |
# if __name__ == "__main__":
|
211 |
# main()
|
212 |
|
213 |
-
#############
|
214 |
-
# %%writefile app.py
|
215 |
-
|
216 |
-
import streamlit as st
|
217 |
-
import matplotlib.pyplot as plt
|
218 |
-
import torch
|
219 |
-
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
220 |
-
from datasets import load_dataset, Dataset
|
221 |
-
from evaluate import load as load_metric
|
222 |
-
from torch.utils.data import DataLoader
|
223 |
-
import pandas as pd
|
224 |
-
import random
|
225 |
-
from collections import OrderedDict
|
226 |
-
import flwr as fl
|
227 |
-
from logging import INFO, DEBUG
|
228 |
-
from flwr.common.logger import log
|
229 |
-
|
230 |
-
DEVICE = torch.device("cpu")
|
231 |
-
|
232 |
-
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
233 |
-
raw_datasets = load_dataset(dataset_name)
|
234 |
-
raw_datasets = raw_datasets.shuffle(seed=42)
|
235 |
-
del raw_datasets["unsupervised"]
|
236 |
-
|
237 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
238 |
-
|
239 |
-
def tokenize_function(examples):
|
240 |
-
return tokenizer(examples["text"], truncation=True)
|
241 |
-
|
242 |
-
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
243 |
-
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
244 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
245 |
-
|
246 |
-
train_datasets = []
|
247 |
-
test_datasets = []
|
248 |
-
|
249 |
-
for _ in range(num_clients):
|
250 |
-
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
251 |
-
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
252 |
-
train_datasets.append(train_dataset)
|
253 |
-
test_datasets.append(test_dataset)
|
254 |
-
|
255 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
256 |
-
|
257 |
-
return train_datasets, test_datasets, data_collator
|
258 |
-
|
259 |
-
def train(net, trainloader, epochs):
|
260 |
-
optimizer = AdamW(net.parameters(), lr=5e-5)
|
261 |
-
net.train()
|
262 |
-
for _ in range(epochs):
|
263 |
-
for batch in trainloader:
|
264 |
-
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
265 |
-
outputs = net(**batch)
|
266 |
-
loss = outputs.loss
|
267 |
-
loss.backward()
|
268 |
-
optimizer.step()
|
269 |
-
optimizer.zero_grad()
|
270 |
-
|
271 |
-
def test(net, testloader):
|
272 |
-
metric = load_metric("accuracy")
|
273 |
-
net.eval()
|
274 |
-
loss = 0
|
275 |
-
for batch in testloader:
|
276 |
-
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
277 |
-
with torch.no_grad():
|
278 |
-
outputs = net(**batch)
|
279 |
-
logits = outputs.logits
|
280 |
-
loss += outputs.loss.item()
|
281 |
-
predictions = torch.argmax(logits, dim=-1)
|
282 |
-
metric.add_batch(predictions=predictions, references=batch["labels"])
|
283 |
-
loss /= len(testloader)
|
284 |
-
accuracy = metric.compute()["accuracy"]
|
285 |
-
return loss, accuracy
|
286 |
-
|
287 |
-
class CustomClient(fl.client.NumPyClient):
|
288 |
-
def __init__(self, net, trainloader, testloader, client_id):
|
289 |
-
self.net = net
|
290 |
-
self.trainloader = trainloader
|
291 |
-
self.testloader = testloader
|
292 |
-
self.client_id = client_id
|
293 |
-
self.losses = []
|
294 |
-
self.accuracies = []
|
295 |
-
|
296 |
-
def get_parameters(self, config):
|
297 |
-
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
298 |
-
|
299 |
-
def set_parameters(self, parameters):
|
300 |
-
params_dict = zip(self.net.state_dict().keys(), parameters)
|
301 |
-
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
302 |
-
self.net.load_state_dict(state_dict, strict=True)
|
303 |
-
|
304 |
-
def fit(self, parameters, config):
|
305 |
-
log(INFO, f"Client {self.client_id} is starting fit()")
|
306 |
-
self.set_parameters(parameters)
|
307 |
-
train(self.net, self.trainloader, epochs=1)
|
308 |
-
loss, accuracy = test(self.net, self.testloader)
|
309 |
-
self.losses.append(loss)
|
310 |
-
self.accuracies.append(accuracy)
|
311 |
-
log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
312 |
-
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
313 |
-
|
314 |
-
def evaluate(self, parameters, config):
|
315 |
-
log(INFO, f"Client {self.client_id} is starting evaluate()")
|
316 |
-
self.set_parameters(parameters)
|
317 |
-
loss, accuracy = test(self.net, self.testloader)
|
318 |
-
log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
319 |
-
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
320 |
-
|
321 |
-
def plot_metrics(self, round_num, plot_placeholder):
|
322 |
-
if self.losses and self.accuracies:
|
323 |
-
plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
324 |
-
plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
|
325 |
-
plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
326 |
-
|
327 |
-
fig, ax1 = plt.subplots()
|
328 |
-
|
329 |
-
color = 'tab:red'
|
330 |
-
ax1.set_xlabel('Round')
|
331 |
-
ax1.set_ylabel('Loss', color=color)
|
332 |
-
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
|
333 |
-
ax1.tick_params(axis='y', labelcolor=color)
|
334 |
-
|
335 |
-
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
336 |
-
color = 'tab:blue'
|
337 |
-
ax2.set_ylabel('Accuracy', color=color)
|
338 |
-
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
|
339 |
-
ax2.tick_params(axis='y', labelcolor=color)
|
340 |
-
|
341 |
-
fig.tight_layout()
|
342 |
-
plot_placeholder.pyplot(fig)
|
343 |
-
|
344 |
-
def read_log_file():
|
345 |
-
with open("log.txt", "r") as file:
|
346 |
-
return file.read()
|
347 |
-
|
348 |
-
def main():
|
349 |
-
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
350 |
-
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
351 |
-
model_name = st.selectbox("Model", ["bert-base-uncased", "facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
352 |
-
|
353 |
-
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
354 |
-
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
355 |
-
|
356 |
-
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
357 |
-
|
358 |
-
trainloaders = []
|
359 |
-
testloaders = []
|
360 |
-
clients = []
|
361 |
-
|
362 |
-
for i in range(NUM_CLIENTS):
|
363 |
-
st.write(f"### Client {i+1} Datasets")
|
364 |
-
|
365 |
-
train_df = pd.DataFrame(train_datasets[i])
|
366 |
-
test_df = pd.DataFrame(test_datasets[i])
|
367 |
-
|
368 |
-
st.write("#### Train Dataset")
|
369 |
-
edited_train_df = st.data_editor(train_df, key=f"train_{i}")
|
370 |
-
st.write("#### Test Dataset")
|
371 |
-
edited_test_df = st.data_editor(test_df, key=f"test_{i}")
|
372 |
-
|
373 |
-
edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
374 |
-
edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
375 |
-
|
376 |
-
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
377 |
-
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
378 |
-
|
379 |
-
trainloaders.append(trainloader)
|
380 |
-
testloaders.append(testloader)
|
381 |
-
|
382 |
-
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
383 |
-
client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
384 |
-
clients.append(client)
|
385 |
-
|
386 |
-
if st.button("Start Training"):
|
387 |
-
def client_fn(cid):
|
388 |
-
return clients[int(cid)]
|
389 |
-
|
390 |
-
def weighted_average(metrics):
|
391 |
-
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
392 |
-
losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
393 |
-
examples = [num_examples for num_examples, _ in metrics]
|
394 |
-
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
395 |
-
|
396 |
-
strategy = fl.server.strategy.FedAvg(
|
397 |
-
fraction_fit=1.0,
|
398 |
-
fraction_evaluate=1.0,
|
399 |
-
evaluate_metrics_aggregation_fn=weighted_average,
|
400 |
-
)
|
401 |
-
|
402 |
-
for round_num in range(NUM_ROUNDS):
|
403 |
-
st.write(f"### Round {round_num + 1}")
|
404 |
-
plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
405 |
-
|
406 |
-
fl.simulation.start_simulation(
|
407 |
-
client_fn=client_fn,
|
408 |
-
num_clients=NUM_CLIENTS,
|
409 |
-
config=fl.server.ServerConfig(num_rounds=1),
|
410 |
-
strategy=strategy,
|
411 |
-
client_resources={"num_cpus": 1, "num_gpus": 0},
|
412 |
-
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
413 |
-
)
|
414 |
-
|
415 |
-
for i, client in enumerate(clients):
|
416 |
-
client.plot_metrics(round_num + 1, plot_placeholders[i])
|
417 |
-
st.write(" ")
|
418 |
-
|
419 |
-
st.success("Training completed successfully!")
|
420 |
-
|
421 |
-
# Display final metrics
|
422 |
-
st.write("## Final Client Metrics")
|
423 |
-
for client in clients:
|
424 |
-
st.write(f"### Client {client.client_id}")
|
425 |
-
st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
426 |
-
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
427 |
-
client.plot_metrics(NUM_ROUNDS, st.empty())
|
428 |
-
st.write(" ")
|
429 |
-
|
430 |
-
# Display log.txt content
|
431 |
-
st.write("## Training Log")
|
432 |
-
st.text(read_log_file())
|
433 |
-
|
434 |
-
else:
|
435 |
-
st.write("Click the 'Start Training' button to start the training process.")
|
436 |
-
|
437 |
-
if __name__ == "__main__":
|
438 |
-
main()
|
439 |
-
|
440 |
#############
|
441 |
|
442 |
# # %%writefile app.py
|
|
|
1 |
+
# %%writefile app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
7 |
+
from datasets import load_dataset, Dataset
|
8 |
+
from evaluate import load as load_metric
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import pandas as pd
|
11 |
+
import random
|
12 |
+
from collections import OrderedDict
|
13 |
+
import flwr as fl
|
14 |
+
|
15 |
+
DEVICE = torch.device("cpu")
|
16 |
+
|
17 |
+
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
18 |
+
raw_datasets = load_dataset(dataset_name)
|
19 |
+
raw_datasets = raw_datasets.shuffle(seed=42)
|
20 |
+
del raw_datasets["unsupervised"]
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
23 |
+
|
24 |
+
def tokenize_function(examples):
|
25 |
+
return tokenizer(examples["text"], truncation=True)
|
26 |
+
|
27 |
+
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
28 |
+
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
29 |
+
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
30 |
+
|
31 |
+
train_datasets = []
|
32 |
+
test_datasets = []
|
33 |
+
|
34 |
+
for _ in range(num_clients):
|
35 |
+
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
36 |
+
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
37 |
+
train_datasets.append(train_dataset)
|
38 |
+
test_datasets.append(test_dataset)
|
39 |
+
|
40 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
41 |
+
|
42 |
+
return train_datasets, test_datasets, data_collator
|
43 |
+
def read_log_file():
|
44 |
+
with open("./log.txt", "r") as file:
|
45 |
+
return file.read()
|
46 |
+
def train(net, trainloader, epochs):
|
47 |
+
optimizer = AdamW(net.parameters(), lr=5e-5)
|
48 |
+
net.train()
|
49 |
+
for _ in range(epochs):
|
50 |
+
for batch in trainloader:
|
51 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
52 |
+
outputs = net(**batch)
|
53 |
+
loss = outputs.loss
|
54 |
+
loss.backward()
|
55 |
+
optimizer.step()
|
56 |
+
optimizer.zero_grad()
|
57 |
+
|
58 |
+
def test(net, testloader):
|
59 |
+
metric = load_metric("accuracy")
|
60 |
+
net.eval()
|
61 |
+
loss = 0
|
62 |
+
for batch in testloader:
|
63 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = net(**batch)
|
66 |
+
logits = outputs.logits
|
67 |
+
loss += outputs.loss.item()
|
68 |
+
predictions = torch.argmax(logits, dim=-1)
|
69 |
+
metric.add_batch(predictions=predictions, references=batch["labels"])
|
70 |
+
loss /= len(testloader)
|
71 |
+
accuracy = metric.compute()["accuracy"]
|
72 |
+
return loss, accuracy
|
73 |
+
|
74 |
+
class CustomClient(fl.client.NumPyClient):
|
75 |
+
def __init__(self, net, trainloader, testloader, client_id):
|
76 |
+
self.net = net
|
77 |
+
self.trainloader = trainloader
|
78 |
+
self.testloader = testloader
|
79 |
+
self.client_id = client_id
|
80 |
+
self.losses = []
|
81 |
+
self.accuracies = []
|
82 |
+
|
83 |
+
def get_parameters(self, config):
|
84 |
+
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
85 |
+
|
86 |
+
def set_parameters(self, parameters):
|
87 |
+
params_dict = zip(self.net.state_dict().keys(), parameters)
|
88 |
+
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
89 |
+
self.net.load_state_dict(state_dict, strict=True)
|
90 |
+
|
91 |
+
def fit(self, parameters, config):
|
92 |
+
self.set_parameters(parameters)
|
93 |
+
train(self.net, self.trainloader, epochs=1)
|
94 |
+
loss, accuracy = test(self.net, self.testloader)
|
95 |
+
self.losses.append(loss)
|
96 |
+
self.accuracies.append(accuracy)
|
97 |
+
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
98 |
+
|
99 |
+
def evaluate(self, parameters, config):
|
100 |
+
self.set_parameters(parameters)
|
101 |
+
loss, accuracy = test(self.net, self.testloader)
|
102 |
+
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
103 |
+
|
104 |
+
def plot_metrics(self, round_num, plot_placeholder):
|
105 |
+
if self.losses and self.accuracies:
|
106 |
+
plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
107 |
+
plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
|
108 |
+
plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
109 |
+
|
110 |
+
fig, ax1 = plt.subplots()
|
111 |
+
|
112 |
+
color = 'tab:red'
|
113 |
+
ax1.set_xlabel('Round')
|
114 |
+
ax1.set_ylabel('Loss', color=color)
|
115 |
+
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
|
116 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
117 |
+
|
118 |
+
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
119 |
+
color = 'tab:blue'
|
120 |
+
ax2.set_ylabel('Accuracy', color=color)
|
121 |
+
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
|
122 |
+
ax2.tick_params(axis='y', labelcolor=color)
|
123 |
+
|
124 |
+
fig.tight_layout()
|
125 |
+
plot_placeholder.pyplot(fig)
|
126 |
+
|
127 |
+
def main():
|
128 |
+
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
129 |
+
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
130 |
+
model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
131 |
+
|
132 |
+
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
133 |
+
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
134 |
+
|
135 |
+
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
136 |
+
|
137 |
+
trainloaders = []
|
138 |
+
testloaders = []
|
139 |
+
clients = []
|
140 |
+
|
141 |
+
for i in range(NUM_CLIENTS):
|
142 |
+
st.write(f"### Client {i+1} Datasets")
|
143 |
+
|
144 |
+
train_df = pd.DataFrame(train_datasets[i])
|
145 |
+
test_df = pd.DataFrame(test_datasets[i])
|
146 |
+
|
147 |
+
st.write("#### Train Dataset")
|
148 |
+
edited_train_df = st.data_editor(train_df, key=f"train_{i}")
|
149 |
+
st.write("#### Test Dataset")
|
150 |
+
edited_test_df = st.data_editor(test_df, key=f"test_{i}")
|
151 |
+
|
152 |
+
edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
153 |
+
edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
154 |
+
|
155 |
+
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
156 |
+
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
157 |
+
|
158 |
+
trainloaders.append(trainloader)
|
159 |
+
testloaders.append(testloader)
|
160 |
+
|
161 |
+
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
162 |
+
client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
163 |
+
clients.append(client)
|
164 |
+
|
165 |
+
if st.button("Start Training"):
|
166 |
+
def client_fn(cid):
|
167 |
+
return clients[int(cid)]
|
168 |
+
|
169 |
+
def weighted_average(metrics):
|
170 |
+
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
171 |
+
losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
172 |
+
examples = [num_examples for num_examples, _ in metrics]
|
173 |
+
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
174 |
+
|
175 |
+
strategy = fl.server.strategy.FedAvg(
|
176 |
+
fraction_fit=1.0,
|
177 |
+
fraction_evaluate=1.0,
|
178 |
+
evaluate_metrics_aggregation_fn=weighted_average,
|
179 |
+
)
|
180 |
+
|
181 |
+
for round_num in range(NUM_ROUNDS):
|
182 |
+
st.write(f"### Round {round_num + 1}")
|
183 |
+
plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
184 |
+
fl.common.logger.configure(identifier="myFlowerExperiment", filename="./log.txt")
|
185 |
+
|
186 |
+
fl.simulation.start_simulation(
|
187 |
+
client_fn=client_fn,
|
188 |
+
num_clients=NUM_CLIENTS,
|
189 |
+
config=fl.server.ServerConfig(num_rounds=1),
|
190 |
+
strategy=strategy,
|
191 |
+
client_resources={"num_cpus": 1, "num_gpus": 0},
|
192 |
+
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
193 |
+
)
|
194 |
+
|
195 |
+
for i, client in enumerate(clients):
|
196 |
+
st.markdown("LOGS : "read_log_file())
|
197 |
+
client.plot_metrics(round_num + 1, plot_placeholders[i])
|
198 |
+
st.write(" ")
|
199 |
+
|
200 |
+
st.success("Training completed successfully!")
|
201 |
+
|
202 |
+
# Display final metrics
|
203 |
+
st.write("## Final Client Metrics")
|
204 |
+
for client in clients:
|
205 |
+
st.write(f"### Client {client.client_id}")
|
206 |
+
st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
207 |
+
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
208 |
+
client.plot_metrics(NUM_ROUNDS, st.empty())
|
209 |
+
st.write(" ")
|
210 |
+
|
211 |
+
else:
|
212 |
+
st.write("Click the 'Start Training' button to start the training process.")
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
main()
|
216 |
+
|
217 |
+
# #############
|
218 |
# # %%writefile app.py
|
219 |
|
220 |
# import streamlit as st
|
|
|
228 |
# import random
|
229 |
# from collections import OrderedDict
|
230 |
# import flwr as fl
|
231 |
+
# from logging import INFO, DEBUG
|
232 |
+
# from flwr.common.logger import log
|
233 |
|
234 |
# DEVICE = torch.device("cpu")
|
235 |
|
|
|
306 |
# self.net.load_state_dict(state_dict, strict=True)
|
307 |
|
308 |
# def fit(self, parameters, config):
|
309 |
+
# log(INFO, f"Client {self.client_id} is starting fit()")
|
310 |
# self.set_parameters(parameters)
|
311 |
# train(self.net, self.trainloader, epochs=1)
|
312 |
# loss, accuracy = test(self.net, self.testloader)
|
313 |
# self.losses.append(loss)
|
314 |
# self.accuracies.append(accuracy)
|
315 |
+
# log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
316 |
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
317 |
|
318 |
# def evaluate(self, parameters, config):
|
319 |
+
# log(INFO, f"Client {self.client_id} is starting evaluate()")
|
320 |
# self.set_parameters(parameters)
|
321 |
# loss, accuracy = test(self.net, self.testloader)
|
322 |
+
# log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
323 |
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
324 |
|
325 |
# def plot_metrics(self, round_num, plot_placeholder):
|
|
|
345 |
# fig.tight_layout()
|
346 |
# plot_placeholder.pyplot(fig)
|
347 |
|
348 |
+
# def read_log_file():
|
349 |
+
# with open("log.txt", "r") as file:
|
350 |
+
# return file.read()
|
351 |
+
|
352 |
# def main():
|
353 |
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
354 |
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
355 |
+
# model_name = st.selectbox("Model", ["bert-base-uncased", "facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
356 |
|
357 |
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
358 |
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
|
|
431 |
# client.plot_metrics(NUM_ROUNDS, st.empty())
|
432 |
# st.write(" ")
|
433 |
|
434 |
+
# # Display log.txt content
|
435 |
+
# st.write("## Training Log")
|
436 |
+
# st.text(read_log_file())
|
437 |
+
|
438 |
# else:
|
439 |
# st.write("Click the 'Start Training' button to start the training process.")
|
440 |
|
441 |
# if __name__ == "__main__":
|
442 |
# main()
|
443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
#############
|
445 |
|
446 |
# # %%writefile app.py
|