alisrbdni's picture
update hubert classificaiton
dd0abb7 verified
raw
history blame
15.2 kB
# %%writefile app.py
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import random
DEVICE = torch.device("cpu")
NUM_ROUNDS = 3
# ########################TinyLLM####################################
# import torch
# import torch.nn as nn
# from torch.nn import functional as F
# # hyperparameters
# batch_size = 64 # how many independent sequences will we process in parallel?
# block_size = 256 # what is the maximum context length for predictions?
# max_iters = 5000
# eval_interval = 500
# learning_rate = 3e-4
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# eval_iters = 200
# n_embd = 384
# n_head = 6
# n_layer = 6
# dropout = 0.2
# # ------------
# torch.manual_seed(1337)
# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# with open('input.txt', 'r', encoding='utf-8') as f:
# text = f.read()
# # here are all the unique characters that occur in this text
# chars = sorted(list(set(text)))
# vocab_size = len(chars)
# # create a mapping from characters to integers
# stoi = { ch:i for i,ch in enumerate(chars) }
# itos = { i:ch for i,ch in enumerate(chars) }
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# # Train and test splits
# data = torch.tensor(encode(text), dtype=torch.long)
# n = int(0.9*len(data)) # first 90% will be train, rest val
# train_data = data[:n]
# val_data = data[n:]
# # data loading
# def get_batch(split):
# # generate a small batch of data of inputs x and targets y
# data = train_data if split == 'train' else val_data
# ix = torch.randint(len(data) - block_size, (batch_size,))
# x = torch.stack([data[i:i+block_size] for i in ix])
# y = torch.stack([data[i+1:i+block_size+1] for i in ix])
# x, y = x.to(device), y.to(device)
# return x, y
# @torch.no_grad()
# def estimate_loss():
# out = {}
# model.eval()
# for split in ['train', 'val']:
# losses = torch.zeros(eval_iters)
# for k in range(eval_iters):
# X, Y = get_batch(split)
# logits, loss = model(X, Y)
# losses[k] = loss.item()
# out[split] = losses.mean()
# model.train()
# return out
# class Head(nn.Module):
# """ one head of self-attention """
# def __init__(self, head_size):
# super().__init__()
# self.key = nn.Linear(n_embd, head_size, bias=False)
# self.query = nn.Linear(n_embd, head_size, bias=False)
# self.value = nn.Linear(n_embd, head_size, bias=False)
# self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# # input of size (batch, time-step, channels)
# # output of size (batch, time-step, head size)
# B,T,C = x.shape
# k = self.key(x) # (B,T,hs)
# q = self.query(x) # (B,T,hs)
# # compute attention scores ("affinities")
# wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
# wei = F.softmax(wei, dim=-1) # (B, T, T)
# wei = self.dropout(wei)
# # perform the weighted aggregation of the values
# v = self.value(x) # (B,T,hs)
# out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
# return out
# class MultiHeadAttention(nn.Module):
# """ multiple heads of self-attention in parallel """
# def __init__(self, num_heads, head_size):
# super().__init__()
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
# self.proj = nn.Linear(head_size * num_heads, n_embd)
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# out = torch.cat([h(x) for h in self.heads], dim=-1)
# out = self.dropout(self.proj(out))
# return out
# class FeedFoward(nn.Module):
# """ a simple linear layer followed by a non-linearity """
# def __init__(self, n_embd):
# super().__init__()
# self.net = nn.Sequential(
# nn.Linear(n_embd, 4 * n_embd),
# nn.ReLU(),
# nn.Linear(4 * n_embd, n_embd),
# nn.Dropout(dropout),
# )
# def forward(self, x):
# return self.net(x)
# class Block(nn.Module):
# """ Transformer block: communication followed by computation """
# def __init__(self, n_embd, n_head):
# # n_embd: embedding dimension, n_head: the number of heads we'd like
# super().__init__()
# head_size = n_embd // n_head
# self.sa = MultiHeadAttention(n_head, head_size)
# self.ffwd = FeedFoward(n_embd)
# self.ln1 = nn.LayerNorm(n_embd)
# self.ln2 = nn.LayerNorm(n_embd)
# def forward(self, x):
# x = x + self.sa(self.ln1(x))
# x = x + self.ffwd(self.ln2(x))
# return x
# class GPTLanguageModel(nn.Module):
# def __init__(self):
# super().__init__()
# # each token directly reads off the logits for the next token from a lookup table
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
# self.position_embedding_table = nn.Embedding(block_size, n_embd)
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
# self.ln_f = nn.LayerNorm(n_embd) # final layer norm
# self.lm_head = nn.Linear(n_embd, vocab_size)
# # better init, not covered in the original GPT video, but important, will cover in followup video
# self.apply(self._init_weights)
# def _init_weights(self, module):
# if isinstance(module, nn.Linear):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# if module.bias is not None:
# torch.nn.init.zeros_(module.bias)
# elif isinstance(module, nn.Embedding):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# def forward(self, idx, targets=None):
# B, T = idx.shape
# # idx and targets are both (B,T) tensor of integers
# tok_emb = self.token_embedding_table(idx) # (B,T,C)
# pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
# x = tok_emb + pos_emb # (B,T,C)
# x = self.blocks(x) # (B,T,C)
# x = self.ln_f(x) # (B,T,C)
# logits = self.lm_head(x) # (B,T,vocab_size)
# if targets is None:
# loss = None
# else:
# B, T, C = logits.shape
# logits = logits.view(B*T, C)
# targets = targets.view(B*T)
# loss = F.cross_entropy(logits, targets)
# return logits, loss
# def generate(self, idx, max_new_tokens):
# # idx is (B, T) array of indices in the current context
# for _ in range(max_new_tokens):
# # crop idx to the last block_size tokens
# idx_cond = idx[:, -block_size:]
# # get the predictions
# logits, loss = self(idx_cond)
# # focus only on the last time step
# logits = logits[:, -1, :] # becomes (B, C)
# # apply softmax to get probabilities
# probs = F.softmax(logits, dim=-1) # (B, C)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# # append sampled index to the running sequence
# idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
# return idx
# model = GPTLanguageModel()
# m = model.to(device)
# # print the number of parameters in the model
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# # create a PyTorch optimizer
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# for iter in range(max_iters):
# # every once in a while evaluate the loss on train and val sets
# if iter % eval_interval == 0 or iter == max_iters - 1:
# losses = estimate_loss()
# print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# # sample a batch of data
# xb, yb = get_batch('train')
# # evaluate the loss
# logits, loss = model(xb, yb)
# optimizer.zero_grad(set_to_none=True)
# loss.backward()
# optimizer.step()
# # generate from the model
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
# ########################TinyLLM##################################
def load_data(dataset_name):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
train_population = random.sample(range(len(raw_datasets["train"])), 20)
test_population = random.sample(range(len(raw_datasets["test"])), 20)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
return trainloader, testloader
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
loss = 0
net.eval()
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader.dataset)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
from transformers import Wav2Vec2Processor, HubertForSequenceClassification
import torch
# def main():
# st.write("## Audio Classification with HuBERT")
# dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
# model_name = "facebook/hubert-base-ls960"
# processor = Wav2Vec2Processor.from_pretrained(model_name)
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# train_dataset, test_dataset = load_data(dataset_name)
# # Further implementation needed for actual data preparation and training loops
# st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")
# if __name__ == "__main__":
# main()
from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
import torch
import soundfile as sf
def load_audio(file_path):
# Load an audio file, return waveform and sampling rate
waveform, sample_rate = sf.read(file_path)
return waveform, sample_rate
def prepare_dataset(data_paths):
# Dummy function to simulate loading and processing a dataset
# Replace this with actual data loading and processing logic
features = []
labels = []
for path, label in data_paths:
waveform, sr = load_audio(path)
input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
features.append(input_values)
labels.append(label)
return torch.cat(features, dim=0), torch.tensor(labels)
def main():
st.write("## Federated Learning with dynamic models and datasets for mobile devices")
dataset_name = st.selectbox("Dataset", ["audio_instruction_task","imdb", "amazon_polarity", "ag_news"])
model_name = st.selectbox("Model", ["facebook/hubert-base-ls960","bert-base-uncased", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# processor = Wav2Vec2Processor.from_pretrained(model_name)
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
trainloader, testloader = load_data(dataset_name)
if st.button("Start Training"):
round_losses = []
round_accuracies = [] # Store accuracy values for each round
for round_num in range(1, NUM_ROUNDS + 1):
st.write(f"## Round {round_num}")
st.write("### Training Metrics for Each Client")
for client in range(1, NUM_CLIENTS + 1):
client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
st.write("### Accuracy Over Rounds")
round_accuracies.append(client_accuracy) # Append the accuracy for this round
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
plt.xlabel("Round")
plt.ylabel("Accuracy")
plt.title("Accuracy Over Rounds")
st.pyplot()
st.write("### Loss Over Rounds")
loss_value = random.random() # Placeholder for loss values
round_losses.append(loss_value)
rounds = list(range(1, round_num + 1))
plt.plot(rounds, round_losses)
plt.xlabel("Round")
plt.ylabel("Loss")
plt.title("Loss Over Rounds")
st.pyplot()
st.success(f"Round {round_num} completed successfully!")
else:
st.write("Click the 'Start Training' button to start the training process.")
if __name__ == "__main__":
main()