# %%writefile app.py | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
import torch | |
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW | |
from datasets import load_dataset | |
from evaluate import load as load_metric | |
from torch.utils.data import DataLoader | |
import random | |
DEVICE = torch.device("cpu") | |
NUM_ROUNDS = 3 | |
# ########################TinyLLM#################################### | |
# import torch | |
# import torch.nn as nn | |
# from torch.nn import functional as F | |
# # hyperparameters | |
# batch_size = 64 # how many independent sequences will we process in parallel? | |
# block_size = 256 # what is the maximum context length for predictions? | |
# max_iters = 5000 | |
# eval_interval = 500 | |
# learning_rate = 3e-4 | |
# device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# eval_iters = 200 | |
# n_embd = 384 | |
# n_head = 6 | |
# n_layer = 6 | |
# dropout = 0.2 | |
# # ------------ | |
# torch.manual_seed(1337) | |
# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt | |
# with open('input.txt', 'r', encoding='utf-8') as f: | |
# text = f.read() | |
# # here are all the unique characters that occur in this text | |
# chars = sorted(list(set(text))) | |
# vocab_size = len(chars) | |
# # create a mapping from characters to integers | |
# stoi = { ch:i for i,ch in enumerate(chars) } | |
# itos = { i:ch for i,ch in enumerate(chars) } | |
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
# # Train and test splits | |
# data = torch.tensor(encode(text), dtype=torch.long) | |
# n = int(0.9*len(data)) # first 90% will be train, rest val | |
# train_data = data[:n] | |
# val_data = data[n:] | |
# # data loading | |
# def get_batch(split): | |
# # generate a small batch of data of inputs x and targets y | |
# data = train_data if split == 'train' else val_data | |
# ix = torch.randint(len(data) - block_size, (batch_size,)) | |
# x = torch.stack([data[i:i+block_size] for i in ix]) | |
# y = torch.stack([data[i+1:i+block_size+1] for i in ix]) | |
# x, y = x.to(device), y.to(device) | |
# return x, y | |
# @torch.no_grad() | |
# def estimate_loss(): | |
# out = {} | |
# model.eval() | |
# for split in ['train', 'val']: | |
# losses = torch.zeros(eval_iters) | |
# for k in range(eval_iters): | |
# X, Y = get_batch(split) | |
# logits, loss = model(X, Y) | |
# losses[k] = loss.item() | |
# out[split] = losses.mean() | |
# model.train() | |
# return out | |
# class Head(nn.Module): | |
# """ one head of self-attention """ | |
# def __init__(self, head_size): | |
# super().__init__() | |
# self.key = nn.Linear(n_embd, head_size, bias=False) | |
# self.query = nn.Linear(n_embd, head_size, bias=False) | |
# self.value = nn.Linear(n_embd, head_size, bias=False) | |
# self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) | |
# self.dropout = nn.Dropout(dropout) | |
# def forward(self, x): | |
# # input of size (batch, time-step, channels) | |
# # output of size (batch, time-step, head size) | |
# B,T,C = x.shape | |
# k = self.key(x) # (B,T,hs) | |
# q = self.query(x) # (B,T,hs) | |
# # compute attention scores ("affinities") | |
# wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T) | |
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) | |
# wei = F.softmax(wei, dim=-1) # (B, T, T) | |
# wei = self.dropout(wei) | |
# # perform the weighted aggregation of the values | |
# v = self.value(x) # (B,T,hs) | |
# out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs) | |
# return out | |
# class MultiHeadAttention(nn.Module): | |
# """ multiple heads of self-attention in parallel """ | |
# def __init__(self, num_heads, head_size): | |
# super().__init__() | |
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
# self.proj = nn.Linear(head_size * num_heads, n_embd) | |
# self.dropout = nn.Dropout(dropout) | |
# def forward(self, x): | |
# out = torch.cat([h(x) for h in self.heads], dim=-1) | |
# out = self.dropout(self.proj(out)) | |
# return out | |
# class FeedFoward(nn.Module): | |
# """ a simple linear layer followed by a non-linearity """ | |
# def __init__(self, n_embd): | |
# super().__init__() | |
# self.net = nn.Sequential( | |
# nn.Linear(n_embd, 4 * n_embd), | |
# nn.ReLU(), | |
# nn.Linear(4 * n_embd, n_embd), | |
# nn.Dropout(dropout), | |
# ) | |
# def forward(self, x): | |
# return self.net(x) | |
# class Block(nn.Module): | |
# """ Transformer block: communication followed by computation """ | |
# def __init__(self, n_embd, n_head): | |
# # n_embd: embedding dimension, n_head: the number of heads we'd like | |
# super().__init__() | |
# head_size = n_embd // n_head | |
# self.sa = MultiHeadAttention(n_head, head_size) | |
# self.ffwd = FeedFoward(n_embd) | |
# self.ln1 = nn.LayerNorm(n_embd) | |
# self.ln2 = nn.LayerNorm(n_embd) | |
# def forward(self, x): | |
# x = x + self.sa(self.ln1(x)) | |
# x = x + self.ffwd(self.ln2(x)) | |
# return x | |
# class GPTLanguageModel(nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# # each token directly reads off the logits for the next token from a lookup table | |
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
# self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) | |
# self.ln_f = nn.LayerNorm(n_embd) # final layer norm | |
# self.lm_head = nn.Linear(n_embd, vocab_size) | |
# # better init, not covered in the original GPT video, but important, will cover in followup video | |
# self.apply(self._init_weights) | |
# def _init_weights(self, module): | |
# if isinstance(module, nn.Linear): | |
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
# if module.bias is not None: | |
# torch.nn.init.zeros_(module.bias) | |
# elif isinstance(module, nn.Embedding): | |
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
# def forward(self, idx, targets=None): | |
# B, T = idx.shape | |
# # idx and targets are both (B,T) tensor of integers | |
# tok_emb = self.token_embedding_table(idx) # (B,T,C) | |
# pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C) | |
# x = tok_emb + pos_emb # (B,T,C) | |
# x = self.blocks(x) # (B,T,C) | |
# x = self.ln_f(x) # (B,T,C) | |
# logits = self.lm_head(x) # (B,T,vocab_size) | |
# if targets is None: | |
# loss = None | |
# else: | |
# B, T, C = logits.shape | |
# logits = logits.view(B*T, C) | |
# targets = targets.view(B*T) | |
# loss = F.cross_entropy(logits, targets) | |
# return logits, loss | |
# def generate(self, idx, max_new_tokens): | |
# # idx is (B, T) array of indices in the current context | |
# for _ in range(max_new_tokens): | |
# # crop idx to the last block_size tokens | |
# idx_cond = idx[:, -block_size:] | |
# # get the predictions | |
# logits, loss = self(idx_cond) | |
# # focus only on the last time step | |
# logits = logits[:, -1, :] # becomes (B, C) | |
# # apply softmax to get probabilities | |
# probs = F.softmax(logits, dim=-1) # (B, C) | |
# # sample from the distribution | |
# idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
# # append sampled index to the running sequence | |
# idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
# return idx | |
# model = GPTLanguageModel() | |
# m = model.to(device) | |
# # print the number of parameters in the model | |
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters') | |
# # create a PyTorch optimizer | |
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) | |
# for iter in range(max_iters): | |
# # every once in a while evaluate the loss on train and val sets | |
# if iter % eval_interval == 0 or iter == max_iters - 1: | |
# losses = estimate_loss() | |
# print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") | |
# # sample a batch of data | |
# xb, yb = get_batch('train') | |
# # evaluate the loss | |
# logits, loss = model(xb, yb) | |
# optimizer.zero_grad(set_to_none=True) | |
# loss.backward() | |
# optimizer.step() | |
# # generate from the model | |
# context = torch.zeros((1, 1), dtype=torch.long, device=device) | |
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist())) | |
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist())) | |
# ########################TinyLLM################################## | |
def load_data(dataset_name): | |
raw_datasets = load_dataset(dataset_name) | |
raw_datasets = raw_datasets.shuffle(seed=42) | |
del raw_datasets["unsupervised"] | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True) | |
train_population = random.sample(range(len(raw_datasets["train"])), 20) | |
test_population = random.sample(range(len(raw_datasets["test"])), 20) | |
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) | |
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population) | |
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population) | |
tokenized_datasets = tokenized_datasets.remove_columns("text") | |
tokenized_datasets = tokenized_datasets.rename_column("label", "labels") | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator) | |
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator) | |
return trainloader, testloader | |
def train(net, trainloader, epochs): | |
optimizer = AdamW(net.parameters(), lr=5e-5) | |
net.train() | |
for _ in range(epochs): | |
for batch in trainloader: | |
batch = {k: v.to(DEVICE) for k, v in batch.items()} | |
outputs = net(**batch) | |
loss = outputs.loss | |
loss.backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
def test(net, testloader): | |
metric = load_metric("accuracy") | |
loss = 0 | |
net.eval() | |
for batch in testloader: | |
batch = {k: v.to(DEVICE) for k, v in batch.items()} | |
with torch.no_grad(): | |
outputs = net(**batch) | |
logits = outputs.logits | |
loss += outputs.loss.item() | |
predictions = torch.argmax(logits, dim=-1) | |
metric.add_batch(predictions=predictions, references=batch["labels"]) | |
loss /= len(testloader.dataset) | |
accuracy = metric.compute()["accuracy"] | |
return loss, accuracy | |
from transformers import Wav2Vec2Processor, HubertForSequenceClassification | |
import torch | |
# def main(): | |
# st.write("## Audio Classification with HuBERT") | |
# dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"]) | |
# model_name = "facebook/hubert-base-ls960" | |
# processor = Wav2Vec2Processor.from_pretrained(model_name) | |
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE) | |
# train_dataset, test_dataset = load_data(dataset_name) | |
# # Further implementation needed for actual data preparation and training loops | |
# st.write("Details of further steps would be filled in based on specific requirements and dataset structure.") | |
# if __name__ == "__main__": | |
# main() | |
from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification | |
import torch | |
import soundfile as sf | |
def load_audio(file_path): | |
# Load an audio file, return waveform and sampling rate | |
waveform, sample_rate = sf.read(file_path) | |
return waveform, sample_rate | |
def prepare_dataset(data_paths): | |
# Dummy function to simulate loading and processing a dataset | |
# Replace this with actual data loading and processing logic | |
features = [] | |
labels = [] | |
for path, label in data_paths: | |
waveform, sr = load_audio(path) | |
input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values | |
features.append(input_values) | |
labels.append(label) | |
return torch.cat(features, dim=0), torch.tensor(labels) | |
def main(): | |
st.write("## Federated Learning with dynamic models and datasets for mobile devices") | |
dataset_name = st.selectbox("Dataset", ["audio_instruction_task","imdb", "amazon_polarity", "ag_news"]) | |
model_name = st.selectbox("Model", ["facebook/hubert-base-ls960","bert-base-uncased", "distilbert-base-uncased"]) | |
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE) | |
# processor = Wav2Vec2Processor.from_pretrained(model_name) | |
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) | |
net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE) | |
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2) | |
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3) | |
trainloader, testloader = load_data(dataset_name) | |
if st.button("Start Training"): | |
round_losses = [] | |
round_accuracies = [] # Store accuracy values for each round | |
for round_num in range(1, NUM_ROUNDS + 1): | |
st.write(f"## Round {round_num}") | |
st.write("### Training Metrics for Each Client") | |
for client in range(1, NUM_CLIENTS + 1): | |
client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics | |
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}") | |
st.write("### Accuracy Over Rounds") | |
round_accuracies.append(client_accuracy) # Append the accuracy for this round | |
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds | |
plt.xlabel("Round") | |
plt.ylabel("Accuracy") | |
plt.title("Accuracy Over Rounds") | |
st.pyplot() | |
st.write("### Loss Over Rounds") | |
loss_value = random.random() # Placeholder for loss values | |
round_losses.append(loss_value) | |
rounds = list(range(1, round_num + 1)) | |
plt.plot(rounds, round_losses) | |
plt.xlabel("Round") | |
plt.ylabel("Loss") | |
plt.title("Loss Over Rounds") | |
st.pyplot() | |
st.success(f"Round {round_num} completed successfully!") | |
else: | |
st.write("Click the 'Start Training' button to start the training process.") | |
if __name__ == "__main__": | |
main() | |