File size: 15,232 Bytes
4da9684
 
 
 
 
 
 
 
 
 
 
 
 
 
20edbc6
 
92bae51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20edbc6
92bae51
20edbc6
92bae51
 
 
 
20edbc6
92bae51
 
20edbc6
92bae51
 
 
 
 
20edbc6
92bae51
 
 
 
20edbc6
 
 
 
 
 
 
 
 
 
 
92bae51
20edbc6
4da9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc648b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd0abb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da9684
 
b18beee
 
 
bc648b4
dd0abb7
 
 
 
bc648b4
dd0abb7
4da9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# %%writefile app.py

import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import random

DEVICE = torch.device("cpu")
NUM_ROUNDS = 3



# ########################TinyLLM####################################

# import torch
# import torch.nn as nn
# from torch.nn import functional as F

# # hyperparameters
# batch_size = 64 # how many independent sequences will we process in parallel?
# block_size = 256 # what is the maximum context length for predictions?
# max_iters = 5000
# eval_interval = 500
# learning_rate = 3e-4
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# eval_iters = 200
# n_embd = 384
# n_head = 6
# n_layer = 6
# dropout = 0.2
# # ------------

# torch.manual_seed(1337)

# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# with open('input.txt', 'r', encoding='utf-8') as f:
#     text = f.read()

# # here are all the unique characters that occur in this text
# chars = sorted(list(set(text)))
# vocab_size = len(chars)
# # create a mapping from characters to integers
# stoi = { ch:i for i,ch in enumerate(chars) }
# itos = { i:ch for i,ch in enumerate(chars) }
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

# # Train and test splits
# data = torch.tensor(encode(text), dtype=torch.long)
# n = int(0.9*len(data)) # first 90% will be train, rest val
# train_data = data[:n]
# val_data = data[n:]

# # data loading
# def get_batch(split):
#     # generate a small batch of data of inputs x and targets y
#     data = train_data if split == 'train' else val_data
#     ix = torch.randint(len(data) - block_size, (batch_size,))
#     x = torch.stack([data[i:i+block_size] for i in ix])
#     y = torch.stack([data[i+1:i+block_size+1] for i in ix])
#     x, y = x.to(device), y.to(device)
#     return x, y

# @torch.no_grad()
# def estimate_loss():
#     out = {}
#     model.eval()
#     for split in ['train', 'val']:
#         losses = torch.zeros(eval_iters)
#         for k in range(eval_iters):
#             X, Y = get_batch(split)
#             logits, loss = model(X, Y)
#             losses[k] = loss.item()
#         out[split] = losses.mean()
#     model.train()
#     return out

# class Head(nn.Module):
#     """ one head of self-attention """

#     def __init__(self, head_size):
#         super().__init__()
#         self.key = nn.Linear(n_embd, head_size, bias=False)
#         self.query = nn.Linear(n_embd, head_size, bias=False)
#         self.value = nn.Linear(n_embd, head_size, bias=False)
#         self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

#         self.dropout = nn.Dropout(dropout)

#     def forward(self, x):
#         # input of size (batch, time-step, channels)
#         # output of size (batch, time-step, head size)
#         B,T,C = x.shape
#         k = self.key(x)   # (B,T,hs)
#         q = self.query(x) # (B,T,hs)
#         # compute attention scores ("affinities")
#         wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
#         wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
#         wei = F.softmax(wei, dim=-1) # (B, T, T)
#         wei = self.dropout(wei)
#         # perform the weighted aggregation of the values
#         v = self.value(x) # (B,T,hs)
#         out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
#         return out

# class MultiHeadAttention(nn.Module):
#     """ multiple heads of self-attention in parallel """

#     def __init__(self, num_heads, head_size):
#         super().__init__()
#         self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
#         self.proj = nn.Linear(head_size * num_heads, n_embd)
#         self.dropout = nn.Dropout(dropout)

#     def forward(self, x):
#         out = torch.cat([h(x) for h in self.heads], dim=-1)
#         out = self.dropout(self.proj(out))
#         return out

# class FeedFoward(nn.Module):
#     """ a simple linear layer followed by a non-linearity """

#     def __init__(self, n_embd):
#         super().__init__()
#         self.net = nn.Sequential(
#             nn.Linear(n_embd, 4 * n_embd),
#             nn.ReLU(),
#             nn.Linear(4 * n_embd, n_embd),
#             nn.Dropout(dropout),
#         )

#     def forward(self, x):
#         return self.net(x)

# class Block(nn.Module):
#     """ Transformer block: communication followed by computation """

#     def __init__(self, n_embd, n_head):
#         # n_embd: embedding dimension, n_head: the number of heads we'd like
#         super().__init__()
#         head_size = n_embd // n_head
#         self.sa = MultiHeadAttention(n_head, head_size)
#         self.ffwd = FeedFoward(n_embd)
#         self.ln1 = nn.LayerNorm(n_embd)
#         self.ln2 = nn.LayerNorm(n_embd)

#     def forward(self, x):
#         x = x + self.sa(self.ln1(x))
#         x = x + self.ffwd(self.ln2(x))
#         return x

# class GPTLanguageModel(nn.Module):

#     def __init__(self):
#         super().__init__()
#         # each token directly reads off the logits for the next token from a lookup table
#         self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
#         self.position_embedding_table = nn.Embedding(block_size, n_embd)
#         self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
#         self.ln_f = nn.LayerNorm(n_embd) # final layer norm
#         self.lm_head = nn.Linear(n_embd, vocab_size)

#         # better init, not covered in the original GPT video, but important, will cover in followup video
#         self.apply(self._init_weights)

#     def _init_weights(self, module):
#         if isinstance(module, nn.Linear):
#             torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
#             if module.bias is not None:
#                 torch.nn.init.zeros_(module.bias)
#         elif isinstance(module, nn.Embedding):
#             torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

#     def forward(self, idx, targets=None):
#         B, T = idx.shape

#         # idx and targets are both (B,T) tensor of integers
#         tok_emb = self.token_embedding_table(idx) # (B,T,C)
#         pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
#         x = tok_emb + pos_emb # (B,T,C)
#         x = self.blocks(x) # (B,T,C)
#         x = self.ln_f(x) # (B,T,C)
#         logits = self.lm_head(x) # (B,T,vocab_size)

#         if targets is None:
#             loss = None
#         else:
#             B, T, C = logits.shape
#             logits = logits.view(B*T, C)
#             targets = targets.view(B*T)
#             loss = F.cross_entropy(logits, targets)

#         return logits, loss

#     def generate(self, idx, max_new_tokens):
#         # idx is (B, T) array of indices in the current context
#         for _ in range(max_new_tokens):
#             # crop idx to the last block_size tokens
#             idx_cond = idx[:, -block_size:]
#             # get the predictions
#             logits, loss = self(idx_cond)
#             # focus only on the last time step
#             logits = logits[:, -1, :] # becomes (B, C)
#             # apply softmax to get probabilities
#             probs = F.softmax(logits, dim=-1) # (B, C)
#             # sample from the distribution
#             idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
#             # append sampled index to the running sequence
#             idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
#         return idx

# model = GPTLanguageModel()
# m = model.to(device)
# # print the number of parameters in the model
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')

# # create a PyTorch optimizer
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

# for iter in range(max_iters):

#     # every once in a while evaluate the loss on train and val sets
#     if iter % eval_interval == 0 or iter == max_iters - 1:
#         losses = estimate_loss()
#         print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

#     # sample a batch of data
#     xb, yb = get_batch('train')

#     # evaluate the loss
#     logits, loss = model(xb, yb)
#     optimizer.zero_grad(set_to_none=True)
#     loss.backward()
#     optimizer.step()

# # generate from the model
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))











# ########################TinyLLM##################################

def load_data(dataset_name):
    raw_datasets = load_dataset(dataset_name)
    raw_datasets = raw_datasets.shuffle(seed=42)
    del raw_datasets["unsupervised"]

    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

    def tokenize_function(examples):
        return tokenizer(examples["text"], truncation=True)

    train_population = random.sample(range(len(raw_datasets["train"])), 20)
    test_population = random.sample(range(len(raw_datasets["test"])), 20)

    tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
    tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
    tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)

    tokenized_datasets = tokenized_datasets.remove_columns("text")
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

    data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
    trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
    testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)

    return trainloader, testloader

def train(net, trainloader, epochs):
    optimizer = AdamW(net.parameters(), lr=5e-5)
    net.train()
    for _ in range(epochs):
        for batch in trainloader:
            batch = {k: v.to(DEVICE) for k, v in batch.items()}
            outputs = net(**batch)
            loss = outputs.loss
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

def test(net, testloader):
    metric = load_metric("accuracy")
    loss = 0
    net.eval()
    for batch in testloader:
        batch = {k: v.to(DEVICE) for k, v in batch.items()}
        with torch.no_grad():
            outputs = net(**batch)
        logits = outputs.logits
        loss += outputs.loss.item()
        predictions = torch.argmax(logits, dim=-1)
        metric.add_batch(predictions=predictions, references=batch["labels"])
    loss /= len(testloader.dataset)
    accuracy = metric.compute()["accuracy"]
    return loss, accuracy





from transformers import Wav2Vec2Processor, HubertForSequenceClassification
import torch

# def main():
#     st.write("## Audio Classification with HuBERT")
#     dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
#     model_name = "facebook/hubert-base-ls960"

#     processor = Wav2Vec2Processor.from_pretrained(model_name)
#     net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

#     train_dataset, test_dataset = load_data(dataset_name)
#     # Further implementation needed for actual data preparation and training loops

#     st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")

# if __name__ == "__main__":
#     main()
from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
import torch
import soundfile as sf

def load_audio(file_path):
    # Load an audio file, return waveform and sampling rate
    waveform, sample_rate = sf.read(file_path)
    return waveform, sample_rate

def prepare_dataset(data_paths):
    # Dummy function to simulate loading and processing a dataset
    # Replace this with actual data loading and processing logic
    features = []
    labels = []
    for path, label in data_paths:
        waveform, sr = load_audio(path)
        input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
        features.append(input_values)
        labels.append(label)
    return torch.cat(features, dim=0), torch.tensor(labels)

    
def main():
    st.write("## Federated Learning with dynamic models and datasets for mobile devices")
    dataset_name = st.selectbox("Dataset", ["audio_instruction_task","imdb", "amazon_polarity", "ag_news"])
    model_name = st.selectbox("Model", ["facebook/hubert-base-ls960","bert-base-uncased", "distilbert-base-uncased"])

    # net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
    # processor = Wav2Vec2Processor.from_pretrained(model_name)
    # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
    net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

    NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
    NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)

    trainloader, testloader = load_data(dataset_name)

    if st.button("Start Training"):
        round_losses = []
        round_accuracies = []  # Store accuracy values for each round
        for round_num in range(1, NUM_ROUNDS + 1):
            st.write(f"## Round {round_num}")

            st.write("### Training Metrics for Each Client")
            for client in range(1, NUM_CLIENTS + 1):
                client_loss, client_accuracy = test(net, testloader)  # Placeholder for actual client metrics
                st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")

            st.write("### Accuracy Over Rounds")
            round_accuracies.append(client_accuracy)  # Append the accuracy for this round
            plt.plot(range(1, round_num + 1), round_accuracies, marker='o')  # Plot accuracy over rounds
            plt.xlabel("Round")
            plt.ylabel("Accuracy")
            plt.title("Accuracy Over Rounds")
            st.pyplot()

            st.write("### Loss Over Rounds")
            loss_value = random.random()  # Placeholder for loss values
            round_losses.append(loss_value)
            rounds = list(range(1, round_num + 1))
            plt.plot(rounds, round_losses)
            plt.xlabel("Round")
            plt.ylabel("Loss")
            plt.title("Loss Over Rounds")
            st.pyplot()

            st.success(f"Round {round_num} completed successfully!")

    else:
        st.write("Click the 'Start Training' button to start the training process.")

if __name__ == "__main__":
    main()