alisrbdni's picture
Update app.py
2c9aff2 verified
raw
history blame
44.3 kB
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset, Dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import pandas as pd
import random
import flwr as fl
DEVICE = torch.device("cpu")
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
train_datasets = []
test_datasets = []
for _ in range(num_clients):
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
train_datasets.append(train_dataset)
test_datasets.append(test_dataset)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
return train_datasets, test_datasets, data_collator
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
net.eval()
loss = 0
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
class CustomClient(fl.client.NumPyClient):
def __init__(self, net, trainloader, testloader, client_id):
self.net = net
self.trainloader = trainloader
self.testloader = testloader
self.client_id = client_id
self.losses = []
self.accuracies = []
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
def set_parameters(self, parameters):
params_dict = zip(self.net.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
self.net.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config):
self.set_parameters(parameters)
train(self.net, self.trainloader, epochs=1)
loss, accuracy = test(self.net, self.testloader)
self.losses.append(loss)
self.accuracies.append(accuracy)
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
def evaluate(self, parameters, config):
self.set_parameters(parameters)
loss, accuracy = test(self.net, self.testloader)
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
def plot_metrics(self, round_num):
if self.losses and self.accuracies:
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('Round')
ax1.set_ylabel('Loss', color=color)
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
color = 'tab:blue'
ax2.set_ylabel('Accuracy', color=color) # we already handled the x-label with ax1
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
st.pyplot(fig)
st.write(f"Round {round_num} - Loss: {self.losses[-1]:.4f}, Accuracy: {self.accuracies[-1]:.4f}")
def main():
st.title("Federated Learning with Dynamic Models and Datasets")
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"], index=0)
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"], index=0)
NUM_CLIENTS = st.slider("Number of Clients", 1, 10, 3)
NUM_ROUNDS = st.slider("Number of Rounds", 1, 10, 5)
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
if st.button("Initialize Clients"):
trainloaders = []
testloaders = []
clients = []
for i in range(NUM_CLIENTS):
train_df = pd.DataFrame(train_datasets[i])
test_df = pd.DataFrame(test_datasets[i])
edited_train_dataset = Dataset.from_pandas(train_df)
edited_test_dataset = Dataset.from_pandas(test_df)
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=4, collate_fn=data_collator)
testloader = DataLoader(edited_test_dataset, batch_size=4, collate_fn=data_collator)
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
client = CustomClient(net, trainloader, testloader, client_id=i+1)
clients.append(client)
for round_num in range(1, NUM_ROUNDS + 1):
st.write(f"### Round {round_num}")
for client in clients:
_, _, _ = client.fit({}, {})
client.plot_metrics(round_num)
st.success("Training completed successfully!")
if __name__ == "__main__":
main()
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader, client_id):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# self.client_id = client_id
# self.losses = []
# self.accuracies = []
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# loss, accuracy = test(self.net, self.testloader)
# self.losses.append(loss)
# self.accuracies.append(accuracy)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def plot_metrics(self, round_num):
# if self.losses and self.accuracies:
# st.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
# st.write(f"Loss: {self.losses[-1]:.4f}")
# st.write(f"Accuracy: {self.accuracies[-1]:.4f}")
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
# ax1.set_xlabel('Round')
# ax1.set_ylabel('Loss', color='g')
# ax2.set_ylabel('Accuracy', color='b')
# plt.title(f'Client {self.client_id} Metrics')
# st.pyplot(fig)
# def main():
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# clients = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
# clients.append(client)
# if st.button("Start Training"):
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# for round_num in range(NUM_ROUNDS):
# st.write(f"### Round {round_num + 1}")
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=1),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# for client in clients:
# client.plot_metrics(round_num + 1)
# st.write(" ")
# st.success(f"Training completed successfully!")
# # Display final metrics
# st.write("## Final Client Metrics")
# for client in clients:
# st.write(f"### Client {client.client_id}")
# st.write(f"Final Loss: {client.losses[-1]:.4f}")
# st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
# client.plot_metrics(NUM_ROUNDS)
# st.write(" ")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader, client_id):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# self.client_id = client_id
# self.losses = []
# self.accuracies = []
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# loss, accuracy = test(self.net, self.testloader)
# self.losses.append(loss)
# self.accuracies.append(accuracy)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def plot_metrics(self):
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
# ax1.set_xlabel('Round')
# ax1.set_ylabel('Loss', color='g')
# ax2.set_ylabel('Accuracy', color='b')
# plt.title(f'Client {self.client_id} Metrics')
# st.pyplot(fig)
# def main():
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# clients = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
# clients.append(client)
# if st.button("Start Training"):
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# st.success(f"Training completed successfully!")
# for client in clients:
# st.write(f"### Client {client.client_id} Model Metrics")
# client.plot_metrics()
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
# 05/2024 # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def main():
# st.write("## Federated Learning with Flower and Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# if st.button("Start Training"):
# round_losses = []
# round_accuracies = []
# clients = [CustomClient(net, trainloaders[i], testloaders[i]) for i in range(NUM_CLIENTS)]
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# st.success(f"Training completed successfully!")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
##ORIGINAL###
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import random
# DEVICE = torch.device("cpu")
# NUM_ROUNDS = 3
# def load_data(dataset_name):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# train_population = random.sample(range(len(raw_datasets["train"])), 20)
# test_population = random.sample(range(len(raw_datasets["test"])), 20)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
# tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
# return trainloader, testloader
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# loss = 0
# net.eval()
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader.dataset)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# from transformers import Wav2Vec2Processor, HubertForSequenceClassification
# import torch
# def main():
# st.write("## Federated Learning with dynamic models and datasets for mobile devices")
# dataset_name = st.selectbox("Dataset", ["imdb","audio_instruction_task", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# # processor = Wav2Vec2Processor.from_pretrained(model_name)
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# trainloader, testloader = load_data(dataset_name)
# if st.button("Start Training"):
# round_losses = []
# round_accuracies = [] # Store accuracy values for each round
# for round_num in range(1, NUM_ROUNDS + 1):
# st.write(f"## Round {round_num}")
# st.write("### Training Metrics for Each Client")
# for client in range(1, NUM_CLIENTS + 1):
# client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
# st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
# st.write("### Accuracy Over Rounds")
# round_accuracies.append(client_accuracy) # Append the accuracy for this round
# plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
# plt.xlabel("Round")
# plt.ylabel("Accuracy")
# plt.title("Accuracy Over Rounds")
# st.pyplot()
# st.write("### Loss Over Rounds")
# loss_value = random.random() # Placeholder for loss values
# round_losses.append(loss_value)
# rounds = list(range(1, round_num + 1))
# plt.plot(rounds, round_losses)
# plt.xlabel("Round")
# plt.ylabel("Loss")
# plt.title("Loss Over Rounds")
# st.pyplot()
# st.success(f"Round {round_num} completed successfully!")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
###ORIGINAL##
# ########################TinyLLM####################################
# import torch
# import torch.nn as nn
# from torch.nn import functional as F
# # hyperparameters
# batch_size = 64 # how many independent sequences will we process in parallel?
# block_size = 256 # what is the maximum context length for predictions?
# max_iters = 5000
# eval_interval = 500
# learning_rate = 3e-4
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# eval_iters = 200
# n_embd = 384
# n_head = 6
# n_layer = 6
# dropout = 0.2
# # ------------
# torch.manual_seed(1337)
# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# with open('input.txt', 'r', encoding='utf-8') as f:
# text = f.read()
# # here are all the unique characters that occur in this text
# chars = sorted(list(set(text)))
# vocab_size = len(chars)
# # create a mapping from characters to integers
# stoi = { ch:i for i,ch in enumerate(chars) }
# itos = { i:ch for i,ch in enumerate(chars) }
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# # Train and test splits
# data = torch.tensor(encode(text), dtype=torch.long)
# n = int(0.9*len(data)) # first 90% will be train, rest val
# train_data = data[:n]
# val_data = data[n:]
# # data loading
# def get_batch(split):
# # generate a small batch of data of inputs x and targets y
# data = train_data if split == 'train' else val_data
# ix = torch.randint(len(data) - block_size, (batch_size,))
# x = torch.stack([data[i:i+block_size] for i in ix])
# y = torch.stack([data[i+1:i+block_size+1] for i in ix])
# x, y = x.to(device), y.to(device)
# return x, y
# @torch.no_grad()
# def estimate_loss():
# out = {}
# model.eval()
# for split in ['train', 'val']:
# losses = torch.zeros(eval_iters)
# for k in range(eval_iters):
# X, Y = get_batch(split)
# logits, loss = model(X, Y)
# losses[k] = loss.item()
# out[split] = losses.mean()
# model.train()
# return out
# class Head(nn.Module):
# """ one head of self-attention """
# def __init__(self, head_size):
# super().__init__()
# self.key = nn.Linear(n_embd, head_size, bias=False)
# self.query = nn.Linear(n_embd, head_size, bias=False)
# self.value = nn.Linear(n_embd, head_size, bias=False)
# self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# # input of size (batch, time-step, channels)
# # output of size (batch, time-step, head size)
# B,T,C = x.shape
# k = self.key(x) # (B,T,hs)
# q = self.query(x) # (B,T,hs)
# # compute attention scores ("affinities")
# wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
# wei = F.softmax(wei, dim=-1) # (B, T, T)
# wei = self.dropout(wei)
# # perform the weighted aggregation of the values
# v = self.value(x) # (B,T,hs)
# out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
# return out
# class MultiHeadAttention(nn.Module):
# """ multiple heads of self-attention in parallel """
# def __init__(self, num_heads, head_size):
# super().__init__()
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
# self.proj = nn.Linear(head_size * num_heads, n_embd)
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# out = torch.cat([h(x) for h in self.heads], dim=-1)
# out = self.dropout(self.proj(out))
# return out
# class FeedFoward(nn.Module):
# """ a simple linear layer followed by a non-linearity """
# def __init__(self, n_embd):
# super().__init__()
# self.net = nn.Sequential(
# nn.Linear(n_embd, 4 * n_embd),
# nn.ReLU(),
# nn.Linear(4 * n_embd, n_embd),
# nn.Dropout(dropout),
# )
# def forward(self, x):
# return self.net(x)
# class Block(nn.Module):
# """ Transformer block: communication followed by computation """
# def __init__(self, n_embd, n_head):
# # n_embd: embedding dimension, n_head: the number of heads we'd like
# super().__init__()
# head_size = n_embd // n_head
# self.sa = MultiHeadAttention(n_head, head_size)
# self.ffwd = FeedFoward(n_embd)
# self.ln1 = nn.LayerNorm(n_embd)
# self.ln2 = nn.LayerNorm(n_embd)
# def forward(self, x):
# x = x + self.sa(self.ln1(x))
# x = x + self.ffwd(self.ln2(x))
# return x
# class GPTLanguageModel(nn.Module):
# def __init__(self):
# super().__init__()
# # each token directly reads off the logits for the next token from a lookup table
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
# self.position_embedding_table = nn.Embedding(block_size, n_embd)
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
# self.ln_f = nn.LayerNorm(n_embd) # final layer norm
# self.lm_head = nn.Linear(n_embd, vocab_size)
# # better init, not covered in the original GPT video, but important, will cover in followup video
# self.apply(self._init_weights)
# def _init_weights(self, module):
# if isinstance(module, nn.Linear):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# if module.bias is not None:
# torch.nn.init.zeros_(module.bias)
# elif isinstance(module, nn.Embedding):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# def forward(self, idx, targets=None):
# B, T = idx.shape
# # idx and targets are both (B,T) tensor of integers
# tok_emb = self.token_embedding_table(idx) # (B,T,C)
# pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
# x = tok_emb + pos_emb # (B,T,C)
# x = self.blocks(x) # (B,T,C)
# x = self.ln_f(x) # (B,T,C)
# logits = self.lm_head(x) # (B,T,vocab_size)
# if targets is None:
# loss = None
# else:
# B, T, C = logits.shape
# logits = logits.view(B*T, C)
# targets = targets.view(B*T)
# loss = F.cross_entropy(logits, targets)
# return logits, loss
# def generate(self, idx, max_new_tokens):
# # idx is (B, T) array of indices in the current context
# for _ in range(max_new_tokens):
# # crop idx to the last block_size tokens
# idx_cond = idx[:, -block_size:]
# # get the predictions
# logits, loss = self(idx_cond)
# # focus only on the last time step
# logits = logits[:, -1, :] # becomes (B, C)
# # apply softmax to get probabilities
# probs = F.softmax(logits, dim=-1) # (B, C)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# # append sampled index to the running sequence
# idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
# return idx
# model = GPTLanguageModel()
# m = model.to(device)
# # print the number of parameters in the model
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# # create a PyTorch optimizer
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# for iter in range(max_iters):
# # every once in a while evaluate the loss on train and val sets
# if iter % eval_interval == 0 or iter == max_iters - 1:
# losses = estimate_loss()
# print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# # sample a batch of data
# xb, yb = get_batch('train')
# # evaluate the loss
# logits, loss = model(xb, yb)
# optimizer.zero_grad(set_to_none=True)
# loss.backward()
# optimizer.step()
# # generate from the model
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
# ########################TinyLLM##################################
# def main():
# st.write("## Audio Classification with HuBERT")
# dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
# model_name = "facebook/hubert-base-ls960"
# processor = Wav2Vec2Processor.from_pretrained(model_name)
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# train_dataset, test_dataset = load_data(dataset_name)
# # Further implementation needed for actual data preparation and training loops
# st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")
# if __name__ == "__main__":
# main()
# from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
# import torch
# import soundfile as sf
# def load_audio(file_path):
# # Load an audio file, return waveform and sampling rate
# waveform, sample_rate = sf.read(file_path)
# return waveform, sample_rate
# def prepare_dataset(data_paths):
# # Dummy function to simulate loading and processing a dataset
# # Replace this with actual data loading and processing logic
# features = []
# labels = []
# for path, label in data_paths:
# waveform, sr = load_audio(path)
# input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
# features.append(input_values)
# labels.append(label)
# return torch.cat(features, dim=0), torch.tensor(labels)