alisrbdni's picture
TinyLLM training added
20edbc6 verified
raw
history blame
12.9 kB
# %%writefile app.py
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import random
DEVICE = torch.device("cpu")
NUM_ROUNDS = 3
########################TinyLLM####################################
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
# ------------
torch.manual_seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
# better init, not covered in the original GPT video, but important, will cover in followup video
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
model = GPTLanguageModel()
m = model.to(device)
# print the number of parameters in the model
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0 or iter == max_iters - 1:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
#open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
########################TinyLLM##################################
def load_data(dataset_name):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
train_population = random.sample(range(len(raw_datasets["train"])), 20)
test_population = random.sample(range(len(raw_datasets["test"])), 20)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
return trainloader, testloader
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
loss = 0
net.eval()
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader.dataset)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
net = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2).to(DEVICE)
def main():
st.write("## Federated Learning with dynamic models and datasets for mobile devices")
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
trainloader, testloader = load_data(dataset_name)
if st.button("Start Training"):
round_losses = []
round_accuracies = [] # Store accuracy values for each round
for round_num in range(1, NUM_ROUNDS + 1):
st.write(f"## Round {round_num}")
st.write("### Training Metrics for Each Client")
for client in range(1, NUM_CLIENTS + 1):
client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
st.write("### Accuracy Over Rounds")
round_accuracies.append(client_accuracy) # Append the accuracy for this round
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
plt.xlabel("Round")
plt.ylabel("Accuracy")
plt.title("Accuracy Over Rounds")
st.pyplot()
st.write("### Loss Over Rounds")
loss_value = random.random() # Placeholder for loss values
round_losses.append(loss_value)
rounds = list(range(1, round_num + 1))
plt.plot(rounds, round_losses)
plt.xlabel("Round")
plt.ylabel("Loss")
plt.title("Loss Over Rounds")
st.pyplot()
st.success(f"Round {round_num} completed successfully!")
else:
st.write("Click the 'Start Training' button to start the training process.")
if __name__ == "__main__":
main()