Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -44,7 +44,6 @@ def install_cuda_toolkit():
|
|
| 44 |
|
| 45 |
install_cuda_toolkit()
|
| 46 |
|
| 47 |
-
|
| 48 |
# Utility to select first image from a folder
|
| 49 |
def first_image_from_dir(directory):
|
| 50 |
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
|
@@ -55,14 +54,27 @@ def first_image_from_dir(directory):
|
|
| 55 |
return None
|
| 56 |
return sorted(files)[0]
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Step 1: Preprocess the input image (Save and Crop)
|
| 59 |
@spaces.GPU()
|
| 60 |
def preprocess_image(image_array, state):
|
| 61 |
-
# Check if an image was uploaded
|
| 62 |
if image_array is None:
|
| 63 |
-
return "β Please upload an image first.", None, state
|
| 64 |
|
| 65 |
-
# Step 1a: Save the uploaded image
|
| 66 |
session_id = str(uuid.uuid4())
|
| 67 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
| 68 |
os.makedirs(base_dir, exist_ok=True)
|
|
@@ -73,96 +85,87 @@ def preprocess_image(image_array, state):
|
|
| 73 |
img.save(saved_image_path)
|
| 74 |
state["image_path"] = saved_image_path
|
| 75 |
|
| 76 |
-
# Step 1b: Run the preprocessing script
|
| 77 |
try:
|
| 78 |
p = subprocess.run([
|
| 79 |
-
"python", "scripts/run_preprocessing.py",
|
| 80 |
-
"--video_or_images_path", saved_image_path
|
| 81 |
], check=True, capture_output=True, text=True)
|
| 82 |
except subprocess.CalledProcessError as e:
|
| 83 |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 84 |
-
# Clean up created directory on failure
|
| 85 |
shutil.rmtree(base_dir)
|
| 86 |
-
return err, None,
|
| 87 |
|
| 88 |
crop_dir = os.path.join(base_dir, "cropped")
|
| 89 |
image = first_image_from_dir(crop_dir)
|
| 90 |
-
return "β
|
| 91 |
-
|
| 92 |
|
| 93 |
# Step 2: Normals inference β normals image
|
| 94 |
@spaces.GPU()
|
| 95 |
def step2_normals(state):
|
| 96 |
session_id = state.get("session_id")
|
| 97 |
if not session_id:
|
| 98 |
-
return "β Please
|
| 99 |
|
| 100 |
try:
|
| 101 |
-
# Execute the network inference for normals
|
| 102 |
p = subprocess.run([
|
| 103 |
-
"python", "scripts/network_inference.py",
|
| 104 |
-
"model.prediction_type=normals", f"video_name={session_id}"
|
| 105 |
], check=True, capture_output=True, text=True)
|
| 106 |
except subprocess.CalledProcessError as e:
|
| 107 |
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 108 |
-
return err, None, state
|
| 109 |
|
| 110 |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
| 111 |
image = first_image_from_dir(normals_dir)
|
| 112 |
-
return "β
Step 2
|
| 113 |
|
| 114 |
# Step 3: UV map inference β uv map image
|
| 115 |
@spaces.GPU()
|
| 116 |
def step3_uv_map(state):
|
| 117 |
session_id = state.get("session_id")
|
| 118 |
if not session_id:
|
| 119 |
-
return "β Please
|
| 120 |
|
| 121 |
try:
|
| 122 |
-
# Execute the network inference for UV map
|
| 123 |
p = subprocess.run([
|
| 124 |
-
"python", "scripts/network_inference.py",
|
| 125 |
-
"model.prediction_type=uv_map", f"video_name={session_id}"
|
| 126 |
], check=True, capture_output=True, text=True)
|
| 127 |
except subprocess.CalledProcessError as e:
|
| 128 |
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 129 |
-
return err, None, state
|
| 130 |
|
| 131 |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
| 132 |
image = first_image_from_dir(uv_dir)
|
| 133 |
-
return "β
Step 3
|
| 134 |
|
| 135 |
# Step 4: Tracking β final tracking image
|
| 136 |
@spaces.GPU()
|
| 137 |
def step4_track(state):
|
| 138 |
session_id = state.get("session_id")
|
| 139 |
if not session_id:
|
| 140 |
-
return "β Please
|
| 141 |
|
| 142 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
| 143 |
try:
|
| 144 |
-
# Execute the tracking script
|
| 145 |
p = subprocess.run([
|
| 146 |
-
"python", script,
|
| 147 |
-
f"video_name={session_id}"
|
| 148 |
], check=True, capture_output=True, text=True)
|
| 149 |
except subprocess.CalledProcessError as e:
|
| 150 |
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 151 |
-
return err, None, state
|
| 152 |
|
| 153 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
| 154 |
image = first_image_from_dir(tracking_dir)
|
| 155 |
-
return "β
|
| 156 |
|
| 157 |
# Build Gradio UI
|
| 158 |
demo = gr.Blocks()
|
| 159 |
|
| 160 |
with demo:
|
| 161 |
gr.Markdown("## Image Processing Pipeline")
|
|
|
|
| 162 |
with gr.Row():
|
| 163 |
with gr.Column():
|
| 164 |
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
| 165 |
-
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
| 166 |
state = gr.State({})
|
| 167 |
with gr.Column():
|
| 168 |
with gr.Row():
|
|
@@ -173,21 +176,41 @@ with demo:
|
|
| 173 |
track_img = gr.Image(label="Tracking", height=256)
|
| 174 |
|
| 175 |
with gr.Row():
|
| 176 |
-
preprocess_btn = gr.Button("Step 1: Preprocess")
|
| 177 |
-
normals_btn = gr.Button("Step 2: Normals")
|
| 178 |
-
uv_map_btn = gr.Button("Step 3: UV Map")
|
| 179 |
-
track_btn = gr.Button("Step 4: Track")
|
| 180 |
-
|
| 181 |
-
#
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
|
|
|
|
|
|
| 187 |
|
| 188 |
# ------------------------------------------------------------------
|
| 189 |
# START THE GRADIO SERVER
|
| 190 |
# ------------------------------------------------------------------
|
| 191 |
demo.queue()
|
| 192 |
-
demo.launch(share=True, ssr_mode=False)
|
| 193 |
-
|
|
|
|
| 44 |
|
| 45 |
install_cuda_toolkit()
|
| 46 |
|
|
|
|
| 47 |
# Utility to select first image from a folder
|
| 48 |
def first_image_from_dir(directory):
|
| 49 |
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
|
|
|
| 54 |
return None
|
| 55 |
return sorted(files)[0]
|
| 56 |
|
| 57 |
+
# Function to reset the UI and state
|
| 58 |
+
def reset_all():
|
| 59 |
+
return (
|
| 60 |
+
None, # crop_img
|
| 61 |
+
None, # normals_img
|
| 62 |
+
None, # uv_img
|
| 63 |
+
None, # track_img
|
| 64 |
+
"Awaiting new image upload...", # status
|
| 65 |
+
{}, # state
|
| 66 |
+
gr.update(interactive=True), # preprocess_btn
|
| 67 |
+
gr.update(interactive=False), # normals_btn
|
| 68 |
+
gr.update(interactive=False), # uv_map_btn
|
| 69 |
+
gr.update(interactive=False) # track_btn
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
# Step 1: Preprocess the input image (Save and Crop)
|
| 73 |
@spaces.GPU()
|
| 74 |
def preprocess_image(image_array, state):
|
|
|
|
| 75 |
if image_array is None:
|
| 76 |
+
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False)
|
| 77 |
|
|
|
|
| 78 |
session_id = str(uuid.uuid4())
|
| 79 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
| 80 |
os.makedirs(base_dir, exist_ok=True)
|
|
|
|
| 85 |
img.save(saved_image_path)
|
| 86 |
state["image_path"] = saved_image_path
|
| 87 |
|
|
|
|
| 88 |
try:
|
| 89 |
p = subprocess.run([
|
| 90 |
+
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
|
|
|
|
| 91 |
], check=True, capture_output=True, text=True)
|
| 92 |
except subprocess.CalledProcessError as e:
|
| 93 |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
|
| 94 |
shutil.rmtree(base_dir)
|
| 95 |
+
return err, None, {}, gr.update(interactive=True), gr.update(interactive=False)
|
| 96 |
|
| 97 |
crop_dir = os.path.join(base_dir, "cropped")
|
| 98 |
image = first_image_from_dir(crop_dir)
|
| 99 |
+
return "β
Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
| 100 |
|
| 101 |
# Step 2: Normals inference β normals image
|
| 102 |
@spaces.GPU()
|
| 103 |
def step2_normals(state):
|
| 104 |
session_id = state.get("session_id")
|
| 105 |
if not session_id:
|
| 106 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
| 107 |
|
| 108 |
try:
|
|
|
|
| 109 |
p = subprocess.run([
|
| 110 |
+
"python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}"
|
|
|
|
| 111 |
], check=True, capture_output=True, text=True)
|
| 112 |
except subprocess.CalledProcessError as e:
|
| 113 |
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 114 |
+
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
|
| 115 |
|
| 116 |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
| 117 |
image = first_image_from_dir(normals_dir)
|
| 118 |
+
return "β
Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
| 119 |
|
| 120 |
# Step 3: UV map inference β uv map image
|
| 121 |
@spaces.GPU()
|
| 122 |
def step3_uv_map(state):
|
| 123 |
session_id = state.get("session_id")
|
| 124 |
if not session_id:
|
| 125 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
| 126 |
|
| 127 |
try:
|
|
|
|
| 128 |
p = subprocess.run([
|
| 129 |
+
"python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}"
|
|
|
|
| 130 |
], check=True, capture_output=True, text=True)
|
| 131 |
except subprocess.CalledProcessError as e:
|
| 132 |
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 133 |
+
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
|
| 134 |
|
| 135 |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
| 136 |
image = first_image_from_dir(uv_dir)
|
| 137 |
+
return "β
Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
| 138 |
|
| 139 |
# Step 4: Tracking β final tracking image
|
| 140 |
@spaces.GPU()
|
| 141 |
def step4_track(state):
|
| 142 |
session_id = state.get("session_id")
|
| 143 |
if not session_id:
|
| 144 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False)
|
| 145 |
|
| 146 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
| 147 |
try:
|
|
|
|
| 148 |
p = subprocess.run([
|
| 149 |
+
"python", script, f"video_name={session_id}"
|
|
|
|
| 150 |
], check=True, capture_output=True, text=True)
|
| 151 |
except subprocess.CalledProcessError as e:
|
| 152 |
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 153 |
+
return err, None, state, gr.update(interactive=True)
|
| 154 |
|
| 155 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
| 156 |
image = first_image_from_dir(tracking_dir)
|
| 157 |
+
return "β
Pipeline complete!", image, state, gr.update(interactive=False)
|
| 158 |
|
| 159 |
# Build Gradio UI
|
| 160 |
demo = gr.Blocks()
|
| 161 |
|
| 162 |
with demo:
|
| 163 |
gr.Markdown("## Image Processing Pipeline")
|
| 164 |
+
gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.")
|
| 165 |
with gr.Row():
|
| 166 |
with gr.Column():
|
| 167 |
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
| 168 |
+
status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.")
|
| 169 |
state = gr.State({})
|
| 170 |
with gr.Column():
|
| 171 |
with gr.Row():
|
|
|
|
| 176 |
track_img = gr.Image(label="Tracking", height=256)
|
| 177 |
|
| 178 |
with gr.Row():
|
| 179 |
+
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
|
| 180 |
+
normals_btn = gr.Button("Step 2: Normals", interactive=False)
|
| 181 |
+
uv_map_btn = gr.Button("Step 3: UV Map", interactive=False)
|
| 182 |
+
track_btn = gr.Button("Step 4: Track", interactive=False)
|
| 183 |
+
|
| 184 |
+
# Define component list for reset
|
| 185 |
+
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
|
| 186 |
+
|
| 187 |
+
# Pipeline execution logic
|
| 188 |
+
preprocess_btn.click(
|
| 189 |
+
fn=preprocess_image,
|
| 190 |
+
inputs=[image_in, state],
|
| 191 |
+
outputs=[status, crop_img, state, preprocess_btn, normals_btn]
|
| 192 |
+
)
|
| 193 |
+
normals_btn.click(
|
| 194 |
+
fn=step2_normals,
|
| 195 |
+
inputs=[state],
|
| 196 |
+
outputs=[status, normals_img, state, normals_btn, uv_map_btn]
|
| 197 |
+
)
|
| 198 |
+
uv_map_btn.click(
|
| 199 |
+
fn=step3_uv_map,
|
| 200 |
+
inputs=[state],
|
| 201 |
+
outputs=[status, uv_img, state, uv_map_btn, track_btn]
|
| 202 |
+
)
|
| 203 |
+
track_btn.click(
|
| 204 |
+
fn=step4_track,
|
| 205 |
+
inputs=[state],
|
| 206 |
+
outputs=[status, track_img, state, track_btn]
|
| 207 |
+
)
|
| 208 |
|
| 209 |
+
# Event to reset everything when a new image is uploaded
|
| 210 |
+
image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset)
|
| 211 |
|
| 212 |
# ------------------------------------------------------------------
|
| 213 |
# START THE GRADIO SERVER
|
| 214 |
# ------------------------------------------------------------------
|
| 215 |
demo.queue()
|
| 216 |
+
demo.launch(share=True, ssr_mode=False)
|
|
|