Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,13 +8,14 @@ import shutil
|
|
| 8 |
import time
|
| 9 |
import gradio as gr
|
| 10 |
import sys
|
| 11 |
-
|
| 12 |
|
| 13 |
# Set environment variables
|
| 14 |
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
|
| 15 |
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
|
| 16 |
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
|
| 17 |
|
|
|
|
| 18 |
def sh(cmd): subprocess.check_call(cmd, shell=True)
|
| 19 |
|
| 20 |
# only do this once per VM restart
|
|
@@ -44,224 +45,149 @@ def install_cuda_toolkit():
|
|
| 44 |
install_cuda_toolkit()
|
| 45 |
|
| 46 |
|
| 47 |
-
# Utility to
|
| 48 |
-
def
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
if not files:
|
| 53 |
return None
|
| 54 |
-
|
| 55 |
-
pattern = os.path.join(frames_dir, f"%05d.{ext}")
|
| 56 |
-
subprocess.run([
|
| 57 |
-
"ffmpeg", "-y", "-i", pattern,
|
| 58 |
-
"-r", str(fps), out_path
|
| 59 |
-
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 60 |
-
return out_path
|
| 61 |
-
|
| 62 |
-
# Function to probe video for duration and frame rate
|
| 63 |
-
def get_video_info(video_path):
|
| 64 |
-
"""
|
| 65 |
-
Probes the uploaded video and returns updated slider configs:
|
| 66 |
-
- seconds slider: max = int(duration)
|
| 67 |
-
- fps slider: max = int(orig_fps)
|
| 68 |
-
"""
|
| 69 |
-
if not video_path:
|
| 70 |
-
# Return default slider updates when no video is uploaded
|
| 71 |
-
return gr.update(maximum=10, value=3, step=1), gr.update(maximum=30, value=15, step=1)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
res = subprocess.run(cmd, capture_output=True, text=True)
|
| 80 |
-
try:
|
| 81 |
-
import json
|
| 82 |
-
data = json.loads(res.stdout)
|
| 83 |
-
stream = next(s for s in data.get('streams', []) if s.get('codec_type') == 'video')
|
| 84 |
-
duration = float(stream.get('duration') or data.get('format', {}).get('duration', 0))
|
| 85 |
-
fr = stream.get('r_frame_rate', '0/1')
|
| 86 |
-
num, den = fr.split('/')
|
| 87 |
-
orig_fps = float(num) / float(den) if float(den) else 30
|
| 88 |
-
except Exception:
|
| 89 |
-
duration, orig_fps = 10, 30
|
| 90 |
-
|
| 91 |
-
# Configure sliders based on actual video properties
|
| 92 |
-
seconds_cfg = gr.update(maximum=int(duration), value=min(int(duration), 3), step=1)
|
| 93 |
-
fps_cfg = gr.update(maximum=int(orig_fps), value=min(int(orig_fps), 15), step=1)
|
| 94 |
-
return seconds_cfg, fps_cfg
|
| 95 |
|
| 96 |
-
# Step
|
| 97 |
-
def step1_trim(video_path, seconds, fps, state):
|
| 98 |
session_id = str(uuid.uuid4())
|
| 99 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
|
|
|
| 100 |
state.update({"session_id": session_id, "base_dir": base_dir})
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
| 104 |
|
|
|
|
| 105 |
try:
|
| 106 |
-
# capture both stdout & stderr
|
| 107 |
p = subprocess.run([
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
trimmed
|
| 112 |
-
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 113 |
-
|
| 114 |
-
all_output = []
|
| 115 |
-
|
| 116 |
-
for line in p.stdout:
|
| 117 |
-
print(line, end="") # real-time echo
|
| 118 |
-
all_output.append(line)
|
| 119 |
-
|
| 120 |
except subprocess.CalledProcessError as e:
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
state["trimmed_path"] = trimmed
|
| 127 |
-
return f"β
Step 1: Trimmed to {seconds}s @{fps}fps", state
|
| 128 |
-
|
| 129 |
-
# Step 2: Preprocessing β cropped video
|
| 130 |
-
@spaces.GPU()
|
| 131 |
-
def step2_preprocess(state):
|
| 132 |
-
session_id = state["session_id"]
|
| 133 |
-
base_dir = state["base_dir"]
|
| 134 |
-
trimmed = state["trimmed_path"]
|
| 135 |
-
|
| 136 |
-
try:
|
| 137 |
-
# capture both stdout & stderr
|
| 138 |
-
p = subprocess.run([
|
| 139 |
-
"python", "scripts/run_preprocessing.py",
|
| 140 |
-
"--video_or_images_path", trimmed
|
| 141 |
-
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 142 |
-
except subprocess.CalledProcessError as e:
|
| 143 |
-
# e.stdout contains everything
|
| 144 |
-
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}"
|
| 145 |
return err, None, state
|
| 146 |
|
| 147 |
crop_dir = os.path.join(base_dir, "cropped")
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
return "β
Step 2: Preprocessing complete", video, state
|
| 151 |
|
| 152 |
-
|
|
|
|
| 153 |
@spaces.GPU()
|
| 154 |
-
def
|
| 155 |
-
session_id = state
|
| 156 |
-
|
|
|
|
| 157 |
|
| 158 |
try:
|
| 159 |
-
#
|
| 160 |
p = subprocess.run([
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
except subprocess.CalledProcessError as e:
|
| 165 |
-
|
| 166 |
-
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}"
|
| 167 |
return err, None, state
|
| 168 |
-
|
| 169 |
-
normals_dir = os.path.join(base_dir, "p3dmm", "normals")
|
| 170 |
-
out = os.path.join(os.path.dirname(state["trimmed_path"]), f"normals_{session_id}.mp4")
|
| 171 |
-
video = make_video_from_frames(normals_dir, out)
|
| 172 |
-
return "β
Step 3: Normals inference complete", video, state
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
@spaces.GPU()
|
| 176 |
-
def
|
| 177 |
-
session_id = state
|
| 178 |
-
|
|
|
|
| 179 |
|
| 180 |
try:
|
| 181 |
-
#
|
| 182 |
p = subprocess.run([
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
except subprocess.CalledProcessError as e:
|
| 187 |
-
|
| 188 |
-
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}"
|
| 189 |
return err, None, state
|
| 190 |
|
| 191 |
-
uv_dir = os.path.join(base_dir, "p3dmm", "uv_map")
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
return "β
Step 4: UV map inference complete", video, state
|
| 195 |
|
| 196 |
-
# Step
|
| 197 |
@spaces.GPU()
|
| 198 |
-
def
|
| 199 |
-
session_id = state
|
|
|
|
|
|
|
|
|
|
| 200 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
| 201 |
-
cmd = [
|
| 202 |
-
"python", script,
|
| 203 |
-
f"video_name={session_id}"
|
| 204 |
-
]
|
| 205 |
try:
|
| 206 |
-
#
|
| 207 |
-
p = subprocess.run(
|
|
|
|
|
|
|
|
|
|
| 208 |
except subprocess.CalledProcessError as e:
|
| 209 |
-
|
| 210 |
-
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}"
|
| 211 |
return err, None, state
|
| 212 |
|
| 213 |
-
# if we get here, it succeeded:
|
| 214 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
return "β
Step 5: Tracking complete", video, state
|
| 218 |
|
| 219 |
# Build Gradio UI
|
| 220 |
demo = gr.Blocks()
|
| 221 |
|
| 222 |
with demo:
|
| 223 |
-
gr.Markdown("##
|
| 224 |
with gr.Row():
|
| 225 |
with gr.Column():
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
fps_slider = gr.Slider(label="Frame Rate (fps)", minimum=15, maximum=30, step=1, value=15)
|
| 230 |
-
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
| 231 |
-
state = gr.State({})
|
| 232 |
with gr.Column():
|
| 233 |
with gr.Row():
|
| 234 |
-
|
| 235 |
-
|
| 236 |
with gr.Row():
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
run_btn_1 = gr.Button("Run Pipeline 1")
|
| 240 |
-
run_btn_2 = gr.Button("Run Pipeline 2")
|
| 241 |
-
run_btn_3 = gr.Button("Run Pipeline 3")
|
| 242 |
-
run_btn_4 = gr.Button("Run Pipeline 4")
|
| 243 |
-
run_btn_5 = gr.Button("Run Pipeline 5")
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
# Pipeline execution
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
# .then(fn=step2_preprocess, inputs=[state], outputs=[status, crop_vid, state])
|
| 256 |
-
# .then(fn=step3_normals, inputs=[state], outputs=[status, normals_vid, state])
|
| 257 |
-
# .then(fn=step4_uv_map, inputs=[state], outputs=[status, uv_vid, state])
|
| 258 |
-
# .then(fn=step5_track, inputs=[state], outputs=[status, track_vid, state])
|
| 259 |
-
|
| 260 |
|
| 261 |
# ------------------------------------------------------------------
|
| 262 |
# START THE GRADIO SERVER
|
| 263 |
# ------------------------------------------------------------------
|
| 264 |
demo.queue()
|
| 265 |
-
|
| 266 |
demo.launch(share=True, ssr_mode=False)
|
| 267 |
|
|
|
|
| 8 |
import time
|
| 9 |
import gradio as gr
|
| 10 |
import sys
|
| 11 |
+
from PIL import Image
|
| 12 |
|
| 13 |
# Set environment variables
|
| 14 |
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
|
| 15 |
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
|
| 16 |
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
|
| 17 |
|
| 18 |
+
|
| 19 |
def sh(cmd): subprocess.check_call(cmd, shell=True)
|
| 20 |
|
| 21 |
# only do this once per VM restart
|
|
|
|
| 45 |
install_cuda_toolkit()
|
| 46 |
|
| 47 |
|
| 48 |
+
# Utility to select first image from a folder
|
| 49 |
+
def first_image_from_dir(directory):
|
| 50 |
+
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
| 51 |
+
files = []
|
| 52 |
+
for p in patterns:
|
| 53 |
+
files.extend(glob.glob(os.path.join(directory, p)))
|
| 54 |
if not files:
|
| 55 |
return None
|
| 56 |
+
return sorted(files)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Step 1: Preprocess the input image (Save and Crop)
|
| 59 |
+
@spaces.GPU()
|
| 60 |
+
def preprocess_image(image_array, state):
|
| 61 |
+
# Check if an image was uploaded
|
| 62 |
+
if image_array is None:
|
| 63 |
+
return "β Please upload an image first.", None, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Step 1a: Save the uploaded image
|
|
|
|
| 66 |
session_id = str(uuid.uuid4())
|
| 67 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
| 68 |
+
os.makedirs(base_dir, exist_ok=True)
|
| 69 |
state.update({"session_id": session_id, "base_dir": base_dir})
|
| 70 |
|
| 71 |
+
img = Image.fromarray(image_array)
|
| 72 |
+
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
|
| 73 |
+
img.save(saved_image_path)
|
| 74 |
+
state["image_path"] = saved_image_path
|
| 75 |
|
| 76 |
+
# Step 1b: Run the preprocessing script
|
| 77 |
try:
|
|
|
|
| 78 |
p = subprocess.run([
|
| 79 |
+
"python", "scripts/run_preprocessing.py",
|
| 80 |
+
"--video_or_images_path", saved_image_path
|
| 81 |
+
], check=True, capture_output=True, text=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
except subprocess.CalledProcessError as e:
|
| 83 |
+
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
| 84 |
+
# Clean up created directory on failure
|
| 85 |
+
shutil.rmtree(base_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
return err, None, state
|
| 87 |
|
| 88 |
crop_dir = os.path.join(base_dir, "cropped")
|
| 89 |
+
image = first_image_from_dir(crop_dir)
|
| 90 |
+
return "β
Preprocessing complete", image, state
|
|
|
|
| 91 |
|
| 92 |
+
|
| 93 |
+
# Step 2: Normals inference β normals image
|
| 94 |
@spaces.GPU()
|
| 95 |
+
def step2_normals(state):
|
| 96 |
+
session_id = state.get("session_id")
|
| 97 |
+
if not session_id:
|
| 98 |
+
return "β Please preprocess an image first.", None, state
|
| 99 |
|
| 100 |
try:
|
| 101 |
+
# Execute the network inference for normals
|
| 102 |
p = subprocess.run([
|
| 103 |
+
"python", "scripts/network_inference.py",
|
| 104 |
+
"model.prediction_type=normals", f"video_name={session_id}"
|
| 105 |
+
], check=True, capture_output=True, text=True)
|
| 106 |
except subprocess.CalledProcessError as e:
|
| 107 |
+
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
|
| 108 |
return err, None, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
| 111 |
+
image = first_image_from_dir(normals_dir)
|
| 112 |
+
return "β
Step 2: Normals inference complete", image, state
|
| 113 |
+
|
| 114 |
+
# Step 3: UV map inference β uv map image
|
| 115 |
@spaces.GPU()
|
| 116 |
+
def step3_uv_map(state):
|
| 117 |
+
session_id = state.get("session_id")
|
| 118 |
+
if not session_id:
|
| 119 |
+
return "β Please preprocess an image first.", None, state
|
| 120 |
|
| 121 |
try:
|
| 122 |
+
# Execute the network inference for UV map
|
| 123 |
p = subprocess.run([
|
| 124 |
+
"python", "scripts/network_inference.py",
|
| 125 |
+
"model.prediction_type=uv_map", f"video_name={session_id}"
|
| 126 |
+
], check=True, capture_output=True, text=True)
|
| 127 |
except subprocess.CalledProcessError as e:
|
| 128 |
+
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
|
| 129 |
return err, None, state
|
| 130 |
|
| 131 |
+
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
| 132 |
+
image = first_image_from_dir(uv_dir)
|
| 133 |
+
return "β
Step 3: UV map inference complete", image, state
|
|
|
|
| 134 |
|
| 135 |
+
# Step 4: Tracking β final tracking image
|
| 136 |
@spaces.GPU()
|
| 137 |
+
def step4_track(state):
|
| 138 |
+
session_id = state.get("session_id")
|
| 139 |
+
if not session_id:
|
| 140 |
+
return "β Please preprocess an image first.", None, state
|
| 141 |
+
|
| 142 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
try:
|
| 144 |
+
# Execute the tracking script
|
| 145 |
+
p = subprocess.run([
|
| 146 |
+
"python", script,
|
| 147 |
+
f"video_name={session_id}"
|
| 148 |
+
], check=True, capture_output=True, text=True)
|
| 149 |
except subprocess.CalledProcessError as e:
|
| 150 |
+
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
|
| 151 |
return err, None, state
|
| 152 |
|
|
|
|
| 153 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
| 154 |
+
image = first_image_from_dir(tracking_dir)
|
| 155 |
+
return "β
Step 4: Tracking complete", image, state
|
|
|
|
| 156 |
|
| 157 |
# Build Gradio UI
|
| 158 |
demo = gr.Blocks()
|
| 159 |
|
| 160 |
with demo:
|
| 161 |
+
gr.Markdown("## Image Processing Pipeline")
|
| 162 |
with gr.Row():
|
| 163 |
with gr.Column():
|
| 164 |
+
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
| 165 |
+
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
| 166 |
+
state = gr.State({})
|
|
|
|
|
|
|
|
|
|
| 167 |
with gr.Column():
|
| 168 |
with gr.Row():
|
| 169 |
+
crop_img = gr.Image(label="Preprocessed", height=256)
|
| 170 |
+
normals_img = gr.Image(label="Normals", height=256)
|
| 171 |
with gr.Row():
|
| 172 |
+
uv_img = gr.Image(label="UV Map", height=256)
|
| 173 |
+
track_img = gr.Image(label="Tracking", height=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
with gr.Row():
|
| 176 |
+
preprocess_btn = gr.Button("Step 1: Preprocess")
|
| 177 |
+
normals_btn = gr.Button("Step 2: Normals")
|
| 178 |
+
uv_map_btn = gr.Button("Step 3: UV Map")
|
| 179 |
+
track_btn = gr.Button("Step 4: Track")
|
| 180 |
|
| 181 |
# Pipeline execution
|
| 182 |
+
preprocess_btn.click(fn=preprocess_image, inputs=[image_in, state], outputs=[status, crop_img, state])
|
| 183 |
+
normals_btn.click(fn=step2_normals, inputs=[state], outputs=[status, normals_img, state])
|
| 184 |
+
uv_map_btn.click(fn=step3_uv_map, inputs=[state], outputs=[status, uv_img, state])
|
| 185 |
+
track_btn.click(fn=step4_track, inputs=[state], outputs=[status, track_img, state])
|
| 186 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
# ------------------------------------------------------------------
|
| 189 |
# START THE GRADIO SERVER
|
| 190 |
# ------------------------------------------------------------------
|
| 191 |
demo.queue()
|
|
|
|
| 192 |
demo.launch(share=True, ssr_mode=False)
|
| 193 |
|