Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,815 Bytes
fc30cd8 c213ea5 a2bb6b2 5d4b5c6 fc30cd8 c213ea5 fc30cd8 c213ea5 f71882d c213ea5 a2bb6b2 291b4d1 a2bb6b2 c213ea5 f71882d fc30cd8 f71882d d080da1 f71882d fc30cd8 c213ea5 e6b83ed c213ea5 fc30cd8 c213ea5 fc30cd8 c213ea5 9c043ce c213ea5 fc30cd8 52983cd ef10a64 fc30cd8 c213ea5 d7535db c213ea5 52983cd 660af31 c213ea5 01f75e7 c213ea5 fc30cd8 e765a08 52983cd c8b1497 52983cd fc30cd8 c213ea5 d6742f9 4867ace c213ea5 01f75e7 b25764c 1505bdd 7f42dcd 8565508 74ceebd 7f42dcd 660af31 7f42dcd 01f75e7 7f42dcd 1505bdd 8565508 74ceebd 1505bdd dd38711 c141043 660af31 01f75e7 660af31 8565508 660af31 dd38711 7f42dcd 01f75e7 7f42dcd 1505bdd ef10a64 1505bdd c213ea5 fc30cd8 52983cd ef10a64 fc30cd8 c213ea5 fc30cd8 c213ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import spaces
import gradio as gr
import os
import sys
from typing import List
# sys.path.append(os.getcwd())
import numpy as np
from PIL import Image
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from gradio_imageslider import ImageSlider
print(f'torch version:{torch.__version__}')
# import subprocess
# import importlib, site, sys
# # Re-discover all .pth/.egg-link files
# for sitedir in site.getsitepackages():
# site.addsitedir(sitedir)
# # Clear caches so importlib will pick up new modules
# importlib.invalidate_caches()
# def sh(cmd): subprocess.check_call(cmd, shell=True)
# sh("pip install -U xformers --index-url https://download.pytorch.org/whl/cu126")
# # tell Python to re-scan site-packages now that the egg-link exists
# import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from huggingface_hub import hf_hub_download, snapshot_download
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
VLM_NAME,
torch_dtype="auto",
device_map="auto" # immediately dispatches layers onto available GPUs
)
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
def _generate_vlm_prompt(
vlm_model: Qwen2_5_VLForConditionalGeneration,
vlm_processor: AutoProcessor,
process_vision_info,
pil_image: Image.Image,
device: str = "cuda"
) -> str:
"""
Given two PIL.Image inputs:
- prev_pil: the “full” image at the previous recursion.
- zoomed_pil: the cropped+resized (zoom) image for this step.
Returns a single “recursive_multiscale” prompt string.
"""
message_text = (
"The give a detailed description of this image."
"describe each element with fine details."
)
messages = [
{"role": "system", "content": message_text},
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
],
},
]
text = vlm_processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
generated = vlm_model.generate(**inputs, max_new_tokens=128)
trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated)
]
out_text = vlm_processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return out_text.strip()
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
snapshot_download(
repo_id="alexnasa/SEESR",
local_dir="preset/models"
)
snapshot_download(
repo_id="stabilityai/stable-diffusion-2-1-base",
local_dir="preset/models/stable-diffusion-2-1-base"
)
snapshot_download(
repo_id="xinyu1205/recognize_anything_model",
local_dir="preset/models/"
)
# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
seesr_model_path = 'preset/models/seesr'
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
# unet.to("cuda")
# controlnet.to("cuda")
# unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
decoder_tile_size=224)
weight_dtype = torch.float16
device = "cuda"
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition='preset/models/DAPE.pth',
image_size=384,
vit='swin_l')
tag_model.eval()
tag_model.to(device, dtype=weight_dtype)
@spaces.GPU(duration=120)
def process(
input_image: Image.Image,
user_prompt: str,
use_KDS: bool,
bandwidth: float,
patch_size: int,
num_particles: int,
positive_prompt: str,
negative_prompt: str,
num_inference_steps: int,
scale_factor: int,
cfg_scale: float,
seed: int,
latent_tiled_size: int,
latent_tiled_overlap: int,
sample_times: int
) -> List[np.ndarray]:
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
prompt_tag = _generate_vlm_prompt(
vlm_model=vlm_model,
vlm_processor=vlm_processor,
process_vision_info=process_vision_info,
pil_image=input_image,
device=device,
)
print(f'oh lala, prompt tag:{prompt_tag}')
# with torch.no_grad():
seed_everything(seed)
generator = torch.Generator(device=device)
validation_prompt = ""
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
lq = ram_transforms(lq)
res = inference(lq, tag_model)
ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {positive_prompt},"
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True #
images = []
for _ in range(sample_times):
try:
with torch.autocast("cuda"):
image = validation_pipeline(
validation_prompt, input_image, negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps, generator=generator,
height=height, width=width,
guidance_scale=cfg_scale, conditioning_scale=1,
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap,
use_KDS=use_KDS, bandwidth=bandwidth, num_particles=num_particles, patch_size=patch_size,
).images[0]
if True: # alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
images.append(np.array(image))
return input_image, images[0]
#
MARKDOWN = \
"""
## SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
[GitHub](https://github.com/cswry/SeeSR) | [Paper](https://arxiv.org/abs/2311.16518)
If SeeSR is helpful for you, please help star the GitHub Repo. Thanks!
"""
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
num_particles = gr.Slider(label="Num of Partickes", minimum=1, maximum=16, step=1, value=10)
bandwidth = gr.Slider(label="Bandwidth", minimum=0.1, maximum=0.8, step=0.1, value=0.1)
patch_size = gr.Slider(label="Patch Size", minimum=1, maximum=16, step=1, value=16)
use_KDS = gr.Checkbox(label="Use Kernel Density Steering")
run_button = gr.Button("Run")
with gr.Accordion("Options", open=True):
user_prompt = gr.Textbox(label="User Prompt", value="")
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
scale_factor = gr.Number(label="SR Scale", value=4)
with gr.Column():
result_gallery = ImageSlider(
interactive=False,
label="Generated Image",
)
examples = gr.Examples(
examples=[
[
"preset/datasets/test_datasets/man.png",
"",
False,
0.1,
4,
4,
"clean, high-resolution, 8k, best quality, masterpiece",
"dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
50,
4,
7.5,
123,
320,
4,
1,
],
[
"preset/datasets/test_datasets/man.png",
"",
True,
0.1,
16,
4,
"clean, high-resolution, 8k, best quality, masterpiece",
"dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
50,
4,
7.5,
123,
320,
4,
1,
],
[
"preset/datasets/test_datasets/man.png",
"",
True,
0.1,
4,
4,
"clean, high-resolution, 8k, best quality, masterpiece",
"dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
50,
4,
7.5,
123,
320,
4,
1,
],
],
inputs=[
input_image,
user_prompt,
use_KDS,
bandwidth,
patch_size,
num_particles,
positive_prompt,
negative_prompt,
num_inference_steps,
scale_factor,
cfg_scale,
seed,
latent_tiled_size,
latent_tiled_overlap,
sample_times,
],
outputs=[result_gallery],
fn=process,
cache_examples=True,
)
inputs = [
input_image,
user_prompt,
use_KDS,
bandwidth,
patch_size,
num_particles,
positive_prompt,
negative_prompt,
num_inference_steps,
scale_factor,
cfg_scale,
seed,
latent_tiled_size,
latent_tiled_overlap,
sample_times,
]
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
block.launch(share=True)
|