File size: 14,815 Bytes
fc30cd8
c213ea5
 
 
 
 
 
 
 
 
 
a2bb6b2
 
5d4b5c6
fc30cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c213ea5
 
fc30cd8
c213ea5
 
 
f71882d
c213ea5
 
 
 
 
 
 
 
 
 
 
a2bb6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291b4d1
 
a2bb6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c213ea5
 
 
 
 
 
 
 
 
f71882d
fc30cd8
f71882d
 
 
 
 
 
d080da1
f71882d
 
fc30cd8
 
 
 
 
c213ea5
 
 
 
 
e6b83ed
c213ea5
 
 
 
 
 
 
 
 
 
 
 
 
fc30cd8
 
 
 
c213ea5
 
 
fc30cd8
c213ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c043ce
c213ea5
 
 
fc30cd8
52983cd
ef10a64
fc30cd8
c213ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7535db
 
 
 
 
 
 
 
 
 
 
c213ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52983cd
660af31
c213ea5
 
 
 
 
 
 
 
 
 
 
01f75e7
c213ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc30cd8
e765a08
52983cd
c8b1497
52983cd
fc30cd8
c213ea5
 
 
 
 
 
 
d6742f9
4867ace
c213ea5
 
 
 
 
 
01f75e7
 
 
 
b25764c
1505bdd
7f42dcd
8565508
74ceebd
7f42dcd
 
660af31
7f42dcd
 
 
 
01f75e7
7f42dcd
 
 
 
 
 
1505bdd
8565508
74ceebd
1505bdd
 
dd38711
c141043
660af31
 
 
01f75e7
660af31
 
 
 
 
 
 
8565508
660af31
 
 
 
dd38711
7f42dcd
 
 
01f75e7
7f42dcd
 
 
 
 
 
1505bdd
 
 
 
 
 
ef10a64
1505bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c213ea5
 
 
fc30cd8
52983cd
ef10a64
fc30cd8
c213ea5
 
 
 
 
 
 
 
 
 
 
 
fc30cd8
c213ea5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import spaces
import gradio as gr
import os
import sys
from typing import List
# sys.path.append(os.getcwd())

import numpy as np
from PIL import Image

import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from gradio_imageslider import ImageSlider

print(f'torch version:{torch.__version__}')

# import subprocess
# import importlib, site, sys

# # Re-discover all .pth/.egg-link files
# for sitedir in site.getsitepackages():
#     site.addsitedir(sitedir)

# # Clear caches so importlib will pick up new modules
# importlib.invalidate_caches()

# def sh(cmd): subprocess.check_call(cmd, shell=True)

# sh("pip install -U xformers --index-url https://download.pytorch.org/whl/cu126")

# # tell Python to re-scan site-packages now that the egg-link exists
# import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()

import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from huggingface_hub import hf_hub_download, snapshot_download

from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline

from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix

from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel

VLM_NAME  = "Qwen/Qwen2.5-VL-3B-Instruct"

vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    VLM_NAME,
    torch_dtype="auto",
    device_map="auto"   # immediately dispatches layers onto available GPUs
)
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)

def _generate_vlm_prompt(
    vlm_model: Qwen2_5_VLForConditionalGeneration,
    vlm_processor: AutoProcessor,
    process_vision_info,
    pil_image: Image.Image,
    device: str = "cuda"
) -> str:
    """
    Given two PIL.Image inputs:
      - prev_pil:   the “full” image at the previous recursion.
      - zoomed_pil: the cropped+resized (zoom) image for this step.
    Returns a single “recursive_multiscale” prompt string.
    """

    message_text = (
        "The give a detailed description of this image."
        "describe each element with fine details."
    )

    messages = [
        {"role": "system", "content": message_text},
        {
            "role": "user",
            "content": [
                {"type": "image", "image": pil_image},
            ],
        },
    ]

    text = vlm_processor.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)

    inputs = vlm_processor(
        text=[text], 
        images=image_inputs, 
        videos=video_inputs, 
        padding=True, 
        return_tensors="pt",
    ).to(device)

    generated = vlm_model.generate(**inputs, max_new_tokens=128)
    trimmed = [
        out_ids[len(in_ids):] 
        for in_ids, out_ids in zip(inputs.input_ids, generated)
    ]
    out_text = vlm_processor.batch_decode(
        trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]

    return out_text.strip()
    
tensor_transforms = transforms.Compose([
                transforms.ToTensor(),
            ])

ram_transforms = transforms.Compose([
            transforms.Resize((384, 384)),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

snapshot_download(
    repo_id="alexnasa/SEESR", 
    local_dir="preset/models"
)


snapshot_download(
    repo_id="stabilityai/stable-diffusion-2-1-base", 
    local_dir="preset/models/stable-diffusion-2-1-base"
)

snapshot_download(
    repo_id="xinyu1205/recognize_anything_model", 
    local_dir="preset/models/"
)


# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
seesr_model_path = 'preset/models/seesr'

scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")

# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)

# unet.to("cuda")
# controlnet.to("cuda")
# unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()

# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
    vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None,
    unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)

validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
                                    decoder_tile_size=224)
weight_dtype = torch.float16
device = "cuda"

# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)


tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
                pretrained_condition='preset/models/DAPE.pth',
                image_size=384,
                vit='swin_l')
tag_model.eval()
tag_model.to(device, dtype=weight_dtype)

@spaces.GPU(duration=120)
def process(
    input_image: Image.Image,
    user_prompt: str,
    use_KDS: bool,
    bandwidth: float,
    patch_size: int,
    num_particles: int,
    positive_prompt: str,
    negative_prompt: str,
    num_inference_steps: int,
    scale_factor: int,
    cfg_scale: float,
    seed: int,
    latent_tiled_size: int,
    latent_tiled_overlap: int,
    sample_times: int
    ) -> List[np.ndarray]:
    process_size = 512
    resize_preproc = transforms.Compose([
        transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
    ])


    prompt_tag = _generate_vlm_prompt(
                vlm_model=vlm_model,
                vlm_processor=vlm_processor,
                process_vision_info=process_vision_info,
                pil_image=input_image,
                device=device,
            )

    print(f'oh lala, prompt tag:{prompt_tag}')
    
    # with torch.no_grad():
    seed_everything(seed)
    generator = torch.Generator(device=device)

    validation_prompt = ""
    lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
    lq = ram_transforms(lq)
    res = inference(lq, tag_model)
    ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
    validation_prompt = f"{res[0]}, {positive_prompt},"
    validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"

    ori_width, ori_height = input_image.size
    resize_flag = False

    rscale = scale_factor
    input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))

    if min(input_image.size) < process_size:
        input_image = resize_preproc(input_image)

    input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
    width, height = input_image.size
    resize_flag = True  #

    images = []
    for _ in range(sample_times):
        try:
            with torch.autocast("cuda"):
                image = validation_pipeline(
                    validation_prompt, input_image, negative_prompt=negative_prompt,
                    num_inference_steps=num_inference_steps, generator=generator,
                    height=height, width=width,
                    guidance_scale=cfg_scale,  conditioning_scale=1,
                    start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
                    latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap, 
                    use_KDS=use_KDS, bandwidth=bandwidth, num_particles=num_particles, patch_size=patch_size,
                ).images[0]

            if True:  # alpha<1.0:
                image = wavelet_color_fix(image, input_image)

            if resize_flag:
                image = image.resize((ori_width * rscale, ori_height * rscale))
        except Exception as e:
            print(e)
            image = Image.new(mode="RGB", size=(512, 512))
        images.append(np.array(image))
    return input_image, images[0]


#
MARKDOWN = \
"""
## SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

[GitHub](https://github.com/cswry/SeeSR) | [Paper](https://arxiv.org/abs/2311.16518)

If SeeSR is helpful for you, please help star the GitHub Repo. Thanks!
"""

block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil")
            num_particles = gr.Slider(label="Num of Partickes", minimum=1, maximum=16, step=1, value=10)
            bandwidth = gr.Slider(label="Bandwidth", minimum=0.1, maximum=0.8, step=0.1, value=0.1)
            patch_size = gr.Slider(label="Patch Size", minimum=1, maximum=16, step=1, value=16)
            use_KDS = gr.Checkbox(label="Use Kernel Density Steering")  
            run_button = gr.Button("Run")
            with gr.Accordion("Options", open=True):
                user_prompt = gr.Textbox(label="User Prompt", value="")
                positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
                )
                cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
                sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
                latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
                latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
                scale_factor = gr.Number(label="SR Scale", value=4)
        with gr.Column():
            result_gallery = ImageSlider(
                    interactive=False,
                    label="Generated Image",
                )
            examples = gr.Examples(
                examples=[
                    [
                        "preset/datasets/test_datasets/man.png", 
                        "",
                        False,
                        0.1,
                        4,
                        4,
                        "clean, high-resolution, 8k, best quality, masterpiece",
                        "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                        50,
                        4,
                        7.5,
                        123,
                        320,
                        4,
                        1,
                    ],
                    [
                        "preset/datasets/test_datasets/man.png", 
                        "",
                        True,
                        0.1,
                        16,
                        4,
                        "clean, high-resolution, 8k, best quality, masterpiece",
                        "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                        50,
                        4,
                        7.5,
                        123,
                        320,
                        4,
                        1,
                    ],
                    [
                        "preset/datasets/test_datasets/man.png", 
                        "",
                        True,
                        0.1,
                        4,
                        4,
                        "clean, high-resolution, 8k, best quality, masterpiece",
                        "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                        50,
                        4,
                        7.5,
                        123,
                        320,
                        4,
                        1,
                    ],                    
                ],
                inputs=[
                    input_image,
                    user_prompt,
                    use_KDS,
                    bandwidth,
                    patch_size,
                    num_particles,
                    positive_prompt,
                    negative_prompt,
                    num_inference_steps,
                    scale_factor,
                    cfg_scale,
                    seed,
                    latent_tiled_size,
                    latent_tiled_overlap,
                    sample_times,
                ],
                outputs=[result_gallery],
                fn=process,
                cache_examples=True,
            )
    inputs = [
        input_image,
        user_prompt,
        use_KDS,
        bandwidth,
        patch_size,
        num_particles,
        positive_prompt,
        negative_prompt,
        num_inference_steps,
        scale_factor,
        cfg_scale,
        seed,
        latent_tiled_size,
        latent_tiled_overlap,
        sample_times,
    ]
    run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])

block.launch(share=True)