Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,9 @@ import numpy as np
|
|
9 |
from PIL import Image
|
10 |
|
11 |
import torch
|
|
|
|
|
|
|
12 |
|
13 |
print(f'torch version:{torch.__version__}')
|
14 |
|
@@ -47,6 +50,69 @@ from torchvision import transforms
|
|
47 |
from models.controlnet import ControlNetModel
|
48 |
from models.unet_2d_condition import UNet2DConditionModel
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
tensor_transforms = transforms.Compose([
|
51 |
transforms.ToTensor(),
|
52 |
])
|
|
|
9 |
from PIL import Image
|
10 |
|
11 |
import torch
|
12 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
13 |
+
from qwen_vl_utils import process_vision_info
|
14 |
+
|
15 |
|
16 |
print(f'torch version:{torch.__version__}')
|
17 |
|
|
|
50 |
from models.controlnet import ControlNetModel
|
51 |
from models.unet_2d_condition import UNet2DConditionModel
|
52 |
|
53 |
+
VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
|
54 |
+
|
55 |
+
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
56 |
+
VLM_NAME,
|
57 |
+
torch_dtype="auto",
|
58 |
+
device_map="auto" # immediately dispatches layers onto available GPUs
|
59 |
+
)
|
60 |
+
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
|
61 |
+
|
62 |
+
def _generate_vlm_prompt(
|
63 |
+
vlm_model: Qwen2_5_VLForConditionalGeneration,
|
64 |
+
vlm_processor: AutoProcessor,
|
65 |
+
process_vision_info,
|
66 |
+
pil_image: Image.Image,
|
67 |
+
device: str = "cuda"
|
68 |
+
) -> str:
|
69 |
+
"""
|
70 |
+
Given two PIL.Image inputs:
|
71 |
+
- prev_pil: the “full” image at the previous recursion.
|
72 |
+
- zoomed_pil: the cropped+resized (zoom) image for this step.
|
73 |
+
Returns a single “recursive_multiscale” prompt string.
|
74 |
+
"""
|
75 |
+
|
76 |
+
message_text = (
|
77 |
+
"The give a detailed description of this image as a caption."
|
78 |
+
)
|
79 |
+
|
80 |
+
messages = [
|
81 |
+
{"role": "system", "content": message_text},
|
82 |
+
{
|
83 |
+
"role": "user",
|
84 |
+
"content": [
|
85 |
+
{"type": "image", "image": pil_image},
|
86 |
+
],
|
87 |
+
},
|
88 |
+
]
|
89 |
+
|
90 |
+
text = vlm_processor.apply_chat_template(
|
91 |
+
messages,
|
92 |
+
tokenize=False,
|
93 |
+
add_generation_prompt=True
|
94 |
+
)
|
95 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
96 |
+
|
97 |
+
inputs = vlm_processor(
|
98 |
+
text=[text],
|
99 |
+
images=image_inputs,
|
100 |
+
videos=video_inputs,
|
101 |
+
padding=True,
|
102 |
+
return_tensors="pt",
|
103 |
+
).to(device)
|
104 |
+
|
105 |
+
generated = vlm_model.generate(**inputs, max_new_tokens=128)
|
106 |
+
trimmed = [
|
107 |
+
out_ids[len(in_ids):]
|
108 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated)
|
109 |
+
]
|
110 |
+
out_text = vlm_processor.batch_decode(
|
111 |
+
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
112 |
+
)[0]
|
113 |
+
|
114 |
+
return out_text.strip()
|
115 |
+
|
116 |
tensor_transforms = transforms.Compose([
|
117 |
transforms.ToTensor(),
|
118 |
])
|