Spaces:
Paused
Paused
title: LISA On Cuda | |
emoji: 📊 | |
colorFrom: yellow | |
colorTo: red | |
sdk: docker | |
pinned: false | |
# exec jupyter on the remote server with port forwarding on localhost | |
1. checkout repo, install venv with jupyter | |
2. port forwarding in localhost wiht private key: `ssh -i /path/to/private_key [email protected] -L 8889:localhost:8889 -N -f` | |
3. start the jupyter-lab server | |
4. connect to page in localhost | |
## Commands to work on saturncloud after clone and git lfs install | |
```bash | |
cd ~/workspace/lisa-on-cuda/ | |
rm -rf lisa_venv | |
python3 -m venv lisa_venv | |
ln -s lisa_venv/ venv | |
source venv/bin/activate | |
pip --version | |
which python | |
python -m pip install pip wheel --upgrade | |
python -m pip install pytest pytest-cov jupyterlab | |
python -m pip install -r requirements.txt | |
nohup jupyter-lab & | |
tail -F nohup.out | |
``` | |
# Jupyterlab Howto | |
To run the `test.ipynb` notebook you should already: | |
- cloned project https://huggingface.co/spaces/aletrn/lisa-on-cuda with active git lfs | |
- created and activated a virtualenv | |
- installed jupyterlab dependencies from requirements_jupyter.txt | |
- installed dependencies from requirements.txt | |
## Hardware requirements | |
- an nvidia gpu with 10 or 12GB of memory (a T4 should suffice) | |
- at least 16GB of system ram | |
[](http://103.170.5.190:7860/) | |
[](https://openxlab.org.cn/apps/detail/openxlab-app/LISA) | |
# LISA: Reasoning Segmentation via Large Language Model | |
<font size=7><div align='center'><b>LISA</b>: Large <b>L</b>anguage <b>I</b>nstructed <b>S</b>egmentation <b>A</b>ssistant</div></font> | |
<font size=7><div align='center' > <a href=https://arxiv.org/pdf/2308.00692.pdf>**Paper**</a> | <a href="https://huggingface.co/xinlai">**Models**</a> | [**Training**](#training) | [**Inference**](#inference) | [**Local Deployment**](#deployment) | [**Dataset**](#dataset) | <a href="http://103.170.5.190:7860/">**Online Demo**</a></div></font> | |
<!-- <p align="center"> <img src="resources/imgs/teaser.jpg" width="100%"> </p> --> | |
<table class="center"> | |
<tr> | |
<td style="text-align:center;"><b>Input</b></td> | |
<td style="text-align:center;"><b>Output</b></td> | |
<td style="text-align:center;"><b>Input</b></td> | |
<td style="text-align:center;"><b>Output</b></td> | |
</tr> | |
<tr> | |
<td><img src="resources/imgs/obama.jpg"></td> | |
<td><img src="vis_output/obama.jpg"></td> | |
<td><img src="resources/imgs/trump.jpg"></td> | |
<td><img src="vis_output/trump.jpg"></td> | |
</tr> | |
<tr> | |
<td width=25% style="text-align:center;color:gray;">"Who was <ins>the president of the US</ins> in this image? Please output segmentation mask and explain the reason."</td> | |
<td width=25% style="text-align:center;">"Sure, the segmentation result is [SEG]. The President of the United States in the image is <ins>President Obama.</ins>”</td> | |
<td width=25% style="text-align:center;color:gray">"Who was <ins>the president of the US</ins> in this image? Please output segmentation mask and explain why."</td> | |
<td width=25% style="text-align:center;">"Sure, [SEG]. In the image, the President of the United States is <ins>President Trump.</ins>"</td> | |
</tr> | |
<tr> | |
<td><img src="resources/imgs/stand_higher.jpg"></td> | |
<td><img src="vis_output/stand_higher.jpg"></td> | |
<td><img src="resources/imgs/camera_lens.jpg"></td> | |
<td><img src="vis_output/camera_lens.jpg"></td> | |
</tr> | |
<tr> | |
<td width=25% style="text-align:center;color:gray;">"What can <ins>make the woman stand higher</ins>? Please output segmentation mask and explain why."</td> | |
<td width=25% style="text-align:center;">"Sure, [SEG]. The woman is <ins>standing higher by using a ladder</ins>..."</td> | |
<td width=25% style="text-align:center;color:gray">"Can you segment <ins>the camera lens that is more suitable for photographing nearby objects</ins> in this image?"</td> | |
<td width=25% style="text-align:center;">"Sure, [SEG]."</td> | |
</tr> | |
<tr> | |
<td><img src="resources/imgs/dog_with_horn.jpg"></td> | |
<td><img src="vis_output/dog_with_horn.jpg"></td> | |
<td><img src="resources/imgs/wash_hands.jpg"></td> | |
<td><img src="vis_output/wash_hands.jpg"></td> | |
</tr> | |
<tr> | |
<td width=25% style="text-align:center;color:gray;">"Can you segment <ins>the unusual part</ins> in this image and explain why."</td> | |
<td width=25% style="text-align:center;">"Sure, it is [SEG]. In the image, the unusual part is <ins>the dog wearing a reindeer antler headband</ins>..."</td> | |
<td width=25% style="text-align:center;color:gray">"Where to <ins>wash hands</ins> in this image? Please output segmentation mask."</td> | |
<td width=25% style="text-align:center;">"Sure, [SEG]."</td> | |
</tr> | |
<tr> | |
<td><img src="resources/imgs/jackma.jpg"></td> | |
<td><img src="vis_output/jackma.jpg"></td> | |
<td><img src="resources/imgs/blackpink.jpg"></td> | |
<td><img src="vis_output/blackpink.jpg"></td> | |
</tr> | |
<tr> | |
<td width=25% style="text-align:center;color:gray;">"Can you segment <ins>the founder of Alibaba</ins> in this image and explain why?"</td> | |
<td width=25% style="text-align:center;">"Sure, it is [SEG]. In the image, the man wearing a red tie and sitting on one of the chairs is <ins>Jack Ma</ins>, the co-founder of Alibaba Group..."</td> | |
<td width=25% style="text-align:center;color:gray">"Please segment <ins>Lisa</ins> in this figure."</td> | |
<td width=25% style="text-align:center;">"Sure, [SEG]."</td> | |
</tr> | |
</table> | |
<p align="center"> <img src="resources/imgs/fig_overview.jpg" width="100%"> </p> | |
## News | |
- [x] [2023.8.30] Release three new models [LISA-7B-v1](https://huggingface.co/xinlai/LISA-7B-v1), [LISA-7B-v1-explanatory](https://huggingface.co/xinlai/LISA-7B-v1-explanatory), and [LISA-13B-llama2-v1-explanatory](https://huggingface.co/xinlai/LISA-13B-llama2-v1-explanatory). Welcome to check them out! | |
- [x] [2023.8.23] Refactor code, and release new model [LISA-13B-llama2-v1](https://huggingface.co/xinlai/LISA-13B-llama2-v1). Welcome to check it out! | |
- [x] [2023.8.9] Training code is released! | |
- [x] [2023.8.4] [Online Demo](http://103.170.5.190:7860/) is released! | |
- [x] [2023.8.4] [*ReasonSeg* Dataset](https://drive.google.com/drive/folders/125mewyg5Ao6tZ3ZdJ-1-E3n04LGVELqy?usp=sharing) and the [LISA-13B-llama2-v0-explanatory](https://huggingface.co/xinlai/LISA-13B-llama2-v0-explanatory) model are released! | |
- [x] [2023.8.3] Inference code and the [LISA-13B-llama2-v0](https://huggingface.co/xinlai/LISA-13B-llama2-v0) model are released. Welcome to check them out! | |
- [x] [2023.8.2] [Paper](https://arxiv.org/pdf/2308.00692.pdf) is released and GitHub repo is created. | |
**LISA: Reasoning Segmentation via Large Language Model [[Paper](https://arxiv.org/abs/2308.00692)]** <br /> | |
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN), | |
[Zhuotao Tian](https://scholar.google.com/citations?user=mEjhz-IAAAAJ&hl=en), | |
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en), | |
[Yanwei Li](https://scholar.google.com/citations?user=I-UCPPcAAAAJ&hl=zh-CN), | |
[Yuhui Yuan](https://scholar.google.com/citations?user=PzyvzksAAAAJ&hl=en), | |
[Shu Liu](https://scholar.google.com.hk/citations?user=BUEDUFkAAAAJ&hl=zh-CN), | |
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br /> | |
## Abstract | |
In this work, we propose a new segmentation task --- ***reasoning segmentation***. The task is designed to output a segmentation mask given a complex and implicit query text. We establish a benchmark comprising over one thousand image-instruction pairs, incorporating intricate reasoning and world knowledge for evaluation purposes. Finally, we present LISA: Large-language Instructed Segmentation Assistant, which inherits the language generation capabilities of the multi-modal Large Language Model (LLM) while also possessing the ability to produce segmentation masks. | |
For more details, please refer to the [paper](https://arxiv.org/abs/2308.00692). | |
## Highlights | |
**LISA** unlocks the new segmentation capabilities of multi-modal LLMs, and can handle cases involving: | |
1. complex reasoning; | |
2. world knowledge; | |
3. explanatory answers; | |
4. multi-turn conversation. | |
**LISA** also demonstrates robust zero-shot capability when trained exclusively on reasoning-free datasets. In addition, fine-tuning the model with merely 239 reasoning segmentation image-instruction pairs results in further performance enhancement. | |
## Experimental results | |
<p align="center"> <img src="resources/imgs/table1.jpg" width="80%"> </p> | |
## Installation | |
``` | |
pip install -r requirements.txt | |
pip install flash-attn --no-build-isolation | |
``` | |
## Training | |
### Training Data Preparation | |
The training data consists of 4 types of data: | |
1. Semantic segmentation datasets: [ADE20K](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip), [COCO-Stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip), [Mapillary](https://www.mapillary.com/dataset/vistas), [PACO-LVIS](https://github.com/facebookresearch/paco/tree/main#dataset-setup), [PASCAL-Part](https://github.com/facebookresearch/VLPart/tree/main/datasets#pascal-part), [COCO Images](http://images.cocodataset.org/zips/train2017.zip) | |
Note: For COCO-Stuff, we use the annotation file stuffthingmaps_trainval2017.zip. We only use the PACO-LVIS part in PACO. COCO Images should be put into the `dataset/coco/` directory. | |
3. Referring segmentation datasets: [refCOCO](https://web.archive.org/web/20220413011718/https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip), [refCOCO+](https://web.archive.org/web/20220413011656/https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip), [refCOCOg](https://web.archive.org/web/20220413012904/https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip), [refCLEF](https://web.archive.org/web/20220413011817/https://bvisionweb1.cs.unc.edu/licheng/referit/data/refclef.zip) ([saiapr_tc-12](https://web.archive.org/web/20220515000000/http://bvisionweb1.cs.unc.edu/licheng/referit/data/images/saiapr_tc-12.zip)) | |
Note: the original links of refCOCO series data are down, and we update them with new ones. If the download speed is super slow or unstable, we also provide a [OneDrive link](https://mycuhk-my.sharepoint.com/:f:/g/personal/1155154502_link_cuhk_edu_hk/Em5yELVBvfREodKC94nOFLoBLro_LPxsOxNV44PHRWgLcA?e=zQPjsc) to download. **You must also follow the rules that the original datasets require.** | |
4. Visual Question Answering dataset: [LLaVA-Instruct-150k](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_150k.json) | |
5. Reasoning segmentation dataset: [ReasonSeg](https://github.com/dvlab-research/LISA#dataset) | |
Download them from the above links, and organize them as follows. | |
``` | |
├── dataset | |
│ ├── ade20k | |
│ │ ├── annotations | |
│ │ └── images | |
│ ├── coco | |
│ │ └── train2017 | |
│ │ ├── 000000000009.jpg | |
│ │ └── ... | |
│ ├── cocostuff | |
│ │ └── train2017 | |
│ │ ├── 000000000009.png | |
│ │ └── ... | |
│ ├── llava_dataset | |
│ │ └── llava_instruct_150k.json | |
│ ├── mapillary | |
│ │ ├── config_v2.0.json | |
│ │ ├── testing | |
│ │ ├── training | |
│ │ └── validation | |
│ ├── reason_seg | |
│ │ └── ReasonSeg | |
│ │ ├── train | |
│ │ ├── val | |
│ │ └── explanatory | |
│ ├── refer_seg | |
│ │ ├── images | |
│ │ | ├── saiapr_tc-12 | |
│ │ | └── mscoco | |
│ │ | └── images | |
│ │ | └── train2014 | |
│ │ ├── refclef | |
│ │ ├── refcoco | |
│ │ ├── refcoco+ | |
│ │ └── refcocog | |
│ └── vlpart | |
│ ├── paco | |
│ │ └── annotations | |
│ └── pascal_part | |
│ ├── train.json | |
│ └── VOCdevkit | |
``` | |
### Pre-trained weights | |
#### LLaVA | |
To train LISA-7B or 13B, you need to follow the [instruction](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) to merge the LLaVA delta weights. Typically, we use the final weights `LLaVA-Lightning-7B-v1-1` and `LLaVA-13B-v1-1` merged from `liuhaotian/LLaVA-Lightning-7B-delta-v1-1` and `liuhaotian/LLaVA-13b-delta-v1-1`, respectively. For Llama2, we can directly use the LLaVA full weights `liuhaotian/llava-llama-2-13b-chat-lightning-preview`. | |
#### SAM ViT-H weights | |
Download SAM ViT-H pre-trained weights from the [link](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth). | |
### Training | |
``` | |
deepspeed --master_port=24999 train_ds.py \ | |
--version="PATH_TO_LLaVA" \ | |
--dataset_dir='./dataset' \ | |
--vision_pretrained="PATH_TO_SAM" \ | |
--dataset="sem_seg||refer_seg||vqa||reason_seg" \ | |
--sample_rates="9,3,3,1" \ | |
--exp_name="lisa-7b" | |
``` | |
When training is finished, to get the full model weight: | |
``` | |
cd ./runs/lisa-7b/ckpt_model && python zero_to_fp32.py . ../pytorch_model.bin | |
``` | |
### Merge LoRA Weight | |
Merge the LoRA weights of `pytorch_model.bin`, save the resulting model into your desired path in the Hugging Face format: | |
``` | |
CUDA_VISIBLE_DEVICES="" python merge_lora_weights_and_save_hf_model.py \ | |
--version="PATH_TO_LLaVA" \ | |
--weight="PATH_TO_pytorch_model.bin" \ | |
--save_path="PATH_TO_SAVED_MODEL" | |
``` | |
For example: | |
``` | |
CUDA_VISIBLE_DEVICES="" python3 merge_lora_weights_and_save_hf_model.py \ | |
--version="./LLaVA/LLaVA-Lightning-7B-v1-1" \ | |
--weight="lisa-7b/pytorch_model.bin" \ | |
--save_path="./LISA-7B" | |
``` | |
### Validation | |
``` | |
deepspeed --master_port=24999 train_ds.py \ | |
--version="PATH_TO_LISA_HF_Model_Directory" \ | |
--dataset_dir='./dataset' \ | |
--vision_pretrained="PATH_TO_SAM" \ | |
--exp_name="lisa-7b" \ | |
--eval_only | |
``` | |
Note: the `v1` model is trained using both `train+val` sets, so please use the `v0` model to reproduce the validation results. (To use the `v0` models, please first checkout to the legacy version repo with `git checkout 0e26916`.) | |
## Inference | |
To chat with [LISA-13B-llama2-v1](https://huggingface.co/xinlai/LISA-13B-llama2-v1) or [LISA-13B-llama2-v1-explanatory](https://huggingface.co/xinlai/LISA-13B-llama2-v1-explanatory): | |
(Note that `chat.py` currently does not support `v0` models (i.e., `LISA-13B-llama2-v0` and `LISA-13B-llama2-v0-explanatory`), if you want to use the `v0` models, please first checkout to the legacy version repo `git checkout 0e26916`.) | |
``` | |
CUDA_VISIBLE_DEVICES=0 python chat.py --version='xinlai/LISA-13B-llama2-v1' | |
CUDA_VISIBLE_DEVICES=0 python chat.py --version='xinlai/LISA-13B-llama2-v1-explanatory' | |
``` | |
To use `bf16` or `fp16` data type for inference: | |
``` | |
CUDA_VISIBLE_DEVICES=0 python chat.py --version='xinlai/LISA-13B-llama2-v1' --precision='bf16' | |
``` | |
To use `8bit` or `4bit` data type for inference (this enables running 13B model on a single 24G or 12G GPU at some cost of generation quality): | |
``` | |
CUDA_VISIBLE_DEVICES=0 python chat.py --version='xinlai/LISA-13B-llama2-v1' --precision='fp16' --load_in_8bit | |
CUDA_VISIBLE_DEVICES=0 python chat.py --version='xinlai/LISA-13B-llama2-v1' --precision='fp16' --load_in_4bit | |
``` | |
Hint: for 13B model, 16-bit inference consumes 30G VRAM with a single GPU, 8-bit inference consumes 16G, and 4-bit inference consumes 9G. | |
After that, input the text prompt and then the image path. For example, | |
``` | |
- Please input your prompt: Where can the driver see the car speed in this image? Please output segmentation mask. | |
- Please input the image path: imgs/example1.jpg | |
- Please input your prompt: Can you segment the food that tastes spicy and hot? | |
- Please input the image path: imgs/example2.jpg | |
``` | |
The results should be like: | |
<p align="center"> <img src="resources/imgs/example1.jpg" width="22%"> <img src="vis_output/example1_masked_img_0.jpg" width="22%"> <img src="resources/imgs/example2.jpg" width="25%"> <img src="vis_output/example2_masked_img_0.jpg" width="25%"> </p> | |
## Deployment | |
``` | |
CUDA_VISIBLE_DEVICES=0 python app.py --version='xinlai/LISA-13B-llama2-v1 --load_in_4bit' | |
CUDA_VISIBLE_DEVICES=0 python app.py --version='xinlai/LISA-13B-llama2-v1-explanatory --load_in_4bit' | |
``` | |
By default, we use 4-bit quantization. Feel free to delete the `--load_in_4bit` argument for 16-bit inference or replace it with `--load_in_8bit` argument for 8-bit inference. | |
## Dataset | |
In ReasonSeg, we have collected 1218 images (239 train, 200 val, and 779 test). The training and validation sets can be download from <a href="https://drive.google.com/drive/folders/125mewyg5Ao6tZ3ZdJ-1-E3n04LGVELqy?usp=sharing">**this link**</a>. | |
Each image is provided with an annotation JSON file: | |
``` | |
image_1.jpg, image_1.json | |
image_2.jpg, image_2.json | |
... | |
image_n.jpg, image_n.json | |
``` | |
Important keys contained in JSON files: | |
``` | |
- "text": text instructions. | |
- "is_sentence": whether the text instructions are long sentences. | |
- "shapes": target polygons. | |
``` | |
The elements of the "shapes" exhibit two categories, namely **"target"** and **"ignore"**. The former category is indispensable for evaluation, while the latter category denotes the ambiguous region and hence disregarded during the evaluation process. | |
We provide a <a href="https://github.com/dvlab-research/LISA/blob/main/utils/data_processing.py">**script**</a> that demonstrates how to process the annotations: | |
``` | |
python3 utils/data_processing.py | |
``` | |
Besides, we leveraged GPT-3.5 for rephrasing instructions, so images in the training set may have **more than one instructions (but fewer than six)** in the "text" field. During training, users may randomly select one as the text query to obtain a better model. | |
## Citation | |
If you find this project useful in your research, please consider citing: | |
``` | |
@article{lai2023lisa, | |
title={LISA: Reasoning Segmentation via Large Language Model}, | |
author={Lai, Xin and Tian, Zhuotao and Chen, Yukang and Li, Yanwei and Yuan, Yuhui and Liu, Shu and Jia, Jiaya}, | |
journal={arXiv preprint arXiv:2308.00692}, | |
year={2023} | |
} | |
@article{yang2023improved, | |
title={An Improved Baseline for Reasoning Segmentation with Large Language Model}, | |
author={Yang, Senqiao and Qu, Tianyuan and Lai, Xin and Tian, Zhuotao and Peng, Bohao and Liu, Shu and Jia, Jiaya}, | |
journal={arXiv preprint arXiv:2312.17240}, | |
year={2023} | |
} | |
``` | |
## Acknowledgement | |
- This work is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) and [SAM](https://github.com/facebookresearch/segment-anything). | |
- placeholders images (error, 'no output segmentation') from Muhammad Khaleeq (https://www.vecteezy.com/members/iyikon) | |