Spaces:
Paused
Paused
File size: 12,182 Bytes
8959fb9 60fa201 8959fb9 6720c3e 8959fb9 4f13199 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 910b241 8959fb9 7355def 8959fb9 7355def 8959fb9 910b241 8959fb9 f7d0956 8959fb9 acbbf71 8959fb9 7355def 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 acbbf71 8959fb9 57d987a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import argparse
import logging
import os
import re
from typing import Callable
import cv2
import gradio as gr
import nh3
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
from . import constants, session_logger, utils
from lisa_on_cuda.LISA import LISAForCausalLM
from lisa_on_cuda.llava import conversation as conversation_lib
from lisa_on_cuda.llava.mm_utils import tokenizer_image_token
from lisa_on_cuda.segment_anything.utils.transforms import ResizeLongestSide
placeholders = utils.create_placeholder_variables()
@session_logger.set_uuid_logging
def parse_args(args_to_parse):
logging.info(f"ROOT_PROJECT:{utils.PROJECT_ROOT_FOLDER}.")
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
parser.add_argument("--vis_save_path", default=str(utils.VIS_OUTPUT), type=str)
parser.add_argument(
"--precision",
default="fp16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=True)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args_to_parse)
@session_logger.set_uuid_logging
def get_cleaned_input(input_str):
logging.info(f"start cleaning of input_str: {input_str}.")
input_str = nh3.clean(
input_str,
tags={
"a",
"abbr",
"acronym",
"b",
"blockquote",
"code",
"em",
"i",
"li",
"ol",
"strong",
"ul",
},
attributes={
"a": {"href", "title"},
"abbr": {"title"},
"acronym": {"title"},
},
url_schemes={"http", "https", "mailto"},
link_rel=None,
)
logging.info(f"cleaned input_str: {input_str}.")
return input_str
@session_logger.set_uuid_logging
def set_image_precision_by_args(input_image, precision):
if precision == "bf16":
input_image = input_image.bfloat16()
elif precision == "fp16":
input_image = input_image.half()
else:
input_image = input_image.float()
return input_image
@session_logger.set_uuid_logging
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
logging.info("preprocess started")
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
logging.info("preprocess ended")
return x
@session_logger.set_uuid_logging
def get_model(args_to_parse):
logging.info("starting model preparation...")
os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
# global tokenizer, tokenizer
# Create model
_tokenizer = AutoTokenizer.from_pretrained(
args_to_parse.version,
cache_dir=None,
model_max_length=args_to_parse.model_max_length,
padding_side="right",
use_fast=False,
)
_tokenizer.pad_token = _tokenizer.unk_token
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
torch_dtype = torch.float32
if args_to_parse.precision == "bf16":
torch_dtype = torch.bfloat16
elif args_to_parse.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args_to_parse.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"load_in_4bit": True,
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["visual_model"],
),
}
)
elif args_to_parse.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
_model = LISAForCausalLM.from_pretrained(
args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower,
seg_token_idx=args_to_parse.seg_token_idx, **kwargs
)
_model.config.eos_token_id = _tokenizer.eos_token_id
_model.config.bos_token_id = _tokenizer.bos_token_id
_model.config.pad_token_id = _tokenizer.pad_token_id
_model.get_model().initialize_vision_modules(_model.get_model().config)
vision_tower = _model.get_model().get_vision_tower()
vision_tower.to(dtype=torch_dtype)
if args_to_parse.precision == "bf16":
_model = _model.bfloat16().cuda()
elif (
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
):
vision_tower = _model.get_model().get_vision_tower()
_model.model.vision_tower = None
import deepspeed
model_engine = deepspeed.init_inference(
model=_model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
_model = model_engine.module
_model.model.vision_tower = vision_tower.half().cuda()
elif args_to_parse.precision == "fp32":
_model = _model.float().cuda()
vision_tower = _model.get_model().get_vision_tower()
vision_tower.to(device=args_to_parse.local_rank)
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
_transform = ResizeLongestSide(args_to_parse.image_size)
_model.eval()
logging.info("model preparation ok!")
return _model, _clip_image_processor, _tokenizer, _transform
@session_logger.set_uuid_logging
def get_inference_model_by_args(args_to_parse):
logging.info(f"args_to_parse:{args_to_parse}, creating model...")
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
logging.info("created model, preparing inference function")
no_seg_out = placeholders["no_seg_out"]
@session_logger.set_uuid_logging
def inference(input_str: str, input_image: str | np.ndarray):
## filter out special chars
input_str = get_cleaned_input(input_str)
logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
logging.info(f"input_str: {input_str}, input_image: {type(input_image)}.")
## input valid check
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
output_str = f"[Error] Unprocessable Entity input: {input_str}."
logging.error(output_str)
from fastapi import status
from fastapi.responses import JSONResponse
return JSONResponse(
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
content={"msg": "Error - Unprocessable Entity"}
)
# Model Inference
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
conv.messages = []
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + input_str
if args_to_parse.use_mm_start_end:
replace_token = (
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_np = input_image
if isinstance(input_image, str):
image_np = cv2.imread(input_image)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (
clip_image_processor.preprocess(image_np, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
)
logging.info(f"image_clip type: {type(image_clip)}.")
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
image = transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
)
logging.info(f"image_clip type: {type(image_clip)}.")
image = set_image_precision_by_args(image, args_to_parse.precision)
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
logging.info(
f"found n {len(pred_masks)} prediction masks, "
f"text_output type: {type(text_output)}, text_output: {text_output}."
)
output_image = no_seg_out
output_mask = no_seg_out
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0 or pred_mask.shape[1] == 0:
continue
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask_bool = pred_mask > 0
output_mask = pred_mask_bool.astype(np.uint8) * 255
output_image = image_np.copy()
output_image[pred_mask_bool] = (
image_np * 0.5
+ pred_mask_bool[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
)[pred_mask_bool]
output_str = f"ASSISTANT: {text_output} ..."
logging.info(f"output_image type: {type(output_mask)}.")
return output_image, output_mask, output_str
logging.info("prepared inference function!")
return inference
@session_logger.set_uuid_logging
def get_gradio_interface(
fn_inference: Callable
):
return gr.Interface(
fn_inference,
inputs=[
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
gr.Image(type="filepath", label="Input Image")
],
outputs=[
gr.Image(type="pil", label="segmentation Output"),
gr.Image(type="pil", label="mask Output"),
gr.Textbox(lines=1, placeholder=None, label="Text Output")
],
title=constants.title,
description=constants.description,
article=constants.article,
examples=constants.examples,
allow_flagging="auto"
)
if __name__ == '__main__':
arrrrg = parse_args([])
print("arrrrg:", arrrrg)
|