Spaces:
Paused
Paused
alessandro trinca tornidor
commited on
Commit
·
8959fb9
1
Parent(s):
d60d246
[refactor] move routes to dedicated routes.py, move app helper functions to dedicated app_helpers.py
Browse files- app/main.py +6 -333
- app/routes.py +19 -0
- utils/app_helpers.py +322 -0
app/main.py
CHANGED
|
@@ -1,360 +1,33 @@
|
|
| 1 |
-
import argparse
|
| 2 |
import logging
|
| 3 |
import os
|
| 4 |
-
import re
|
| 5 |
import sys
|
| 6 |
-
from typing import Callable
|
| 7 |
-
|
| 8 |
-
import cv2
|
| 9 |
import gradio as gr
|
| 10 |
-
import nh3
|
| 11 |
-
import numpy as np
|
| 12 |
-
import torch
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
from fastapi import FastAPI
|
| 15 |
from fastapi.staticfiles import StaticFiles
|
| 16 |
from fastapi.templating import Jinja2Templates
|
| 17 |
-
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
|
| 18 |
|
| 19 |
-
from
|
| 20 |
-
from
|
| 21 |
-
from model.llava.mm_utils import tokenizer_image_token
|
| 22 |
-
from model.segment_anything.utils.transforms import ResizeLongestSide
|
| 23 |
-
from utils import constants, session_logger, utils
|
| 24 |
|
| 25 |
|
| 26 |
session_logger.change_logging(logging.DEBUG)
|
| 27 |
|
| 28 |
CUSTOM_GRADIO_PATH = "/"
|
| 29 |
app = FastAPI(title="lisa_app", version="1.0")
|
|
|
|
| 30 |
|
| 31 |
FASTAPI_STATIC = os.getenv("FASTAPI_STATIC")
|
| 32 |
os.makedirs(FASTAPI_STATIC, exist_ok=True)
|
| 33 |
app.mount("/static", StaticFiles(directory=FASTAPI_STATIC), name="static")
|
| 34 |
templates = Jinja2Templates(directory="templates")
|
| 35 |
-
placeholders = utils.create_placeholder_variables()
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
@app.get("/health")
|
| 39 |
-
@session_logger.set_uuid_logging
|
| 40 |
-
def health() -> str:
|
| 41 |
-
import json
|
| 42 |
-
|
| 43 |
-
try:
|
| 44 |
-
logging.info("health check")
|
| 45 |
-
return json.dumps({"msg": "ok"})
|
| 46 |
-
except Exception as e:
|
| 47 |
-
logging.error(f"exception:{e}.")
|
| 48 |
-
return json.dumps({"msg": "request failed"})
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
@session_logger.set_uuid_logging
|
| 52 |
-
def parse_args(args_to_parse):
|
| 53 |
-
parser = argparse.ArgumentParser(description="LISA chat")
|
| 54 |
-
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
|
| 55 |
-
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
|
| 56 |
-
parser.add_argument(
|
| 57 |
-
"--precision",
|
| 58 |
-
default="fp16",
|
| 59 |
-
type=str,
|
| 60 |
-
choices=["fp32", "bf16", "fp16"],
|
| 61 |
-
help="precision for inference",
|
| 62 |
-
)
|
| 63 |
-
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
| 64 |
-
parser.add_argument("--model_max_length", default=512, type=int)
|
| 65 |
-
parser.add_argument("--lora_r", default=8, type=int)
|
| 66 |
-
parser.add_argument(
|
| 67 |
-
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
|
| 68 |
-
)
|
| 69 |
-
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
|
| 70 |
-
parser.add_argument("--load_in_8bit", action="store_true", default=False)
|
| 71 |
-
parser.add_argument("--load_in_4bit", action="store_true", default=True)
|
| 72 |
-
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
|
| 73 |
-
parser.add_argument(
|
| 74 |
-
"--conv_type",
|
| 75 |
-
default="llava_v1",
|
| 76 |
-
type=str,
|
| 77 |
-
choices=["llava_v1", "llava_llama_2"],
|
| 78 |
-
)
|
| 79 |
-
return parser.parse_args(args_to_parse)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
@session_logger.set_uuid_logging
|
| 83 |
-
def get_cleaned_input(input_str):
|
| 84 |
-
logging.info(f"start cleaning of input_str: {input_str}.")
|
| 85 |
-
input_str = nh3.clean(
|
| 86 |
-
input_str,
|
| 87 |
-
tags={
|
| 88 |
-
"a",
|
| 89 |
-
"abbr",
|
| 90 |
-
"acronym",
|
| 91 |
-
"b",
|
| 92 |
-
"blockquote",
|
| 93 |
-
"code",
|
| 94 |
-
"em",
|
| 95 |
-
"i",
|
| 96 |
-
"li",
|
| 97 |
-
"ol",
|
| 98 |
-
"strong",
|
| 99 |
-
"ul",
|
| 100 |
-
},
|
| 101 |
-
attributes={
|
| 102 |
-
"a": {"href", "title"},
|
| 103 |
-
"abbr": {"title"},
|
| 104 |
-
"acronym": {"title"},
|
| 105 |
-
},
|
| 106 |
-
url_schemes={"http", "https", "mailto"},
|
| 107 |
-
link_rel=None,
|
| 108 |
-
)
|
| 109 |
-
logging.info(f"cleaned input_str: {input_str}.")
|
| 110 |
-
return input_str
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
@session_logger.set_uuid_logging
|
| 114 |
-
def set_image_precision_by_args(input_image, precision):
|
| 115 |
-
if precision == "bf16":
|
| 116 |
-
input_image = input_image.bfloat16()
|
| 117 |
-
elif precision == "fp16":
|
| 118 |
-
input_image = input_image.half()
|
| 119 |
-
else:
|
| 120 |
-
input_image = input_image.float()
|
| 121 |
-
return input_image
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
@session_logger.set_uuid_logging
|
| 125 |
-
def preprocess(
|
| 126 |
-
x,
|
| 127 |
-
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
|
| 128 |
-
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
|
| 129 |
-
img_size=1024,
|
| 130 |
-
) -> torch.Tensor:
|
| 131 |
-
"""Normalize pixel values and pad to a square input."""
|
| 132 |
-
logging.info("preprocess started")
|
| 133 |
-
# Normalize colors
|
| 134 |
-
x = (x - pixel_mean) / pixel_std
|
| 135 |
-
# Pad
|
| 136 |
-
h, w = x.shape[-2:]
|
| 137 |
-
padh = img_size - h
|
| 138 |
-
padw = img_size - w
|
| 139 |
-
x = F.pad(x, (0, padw, 0, padh))
|
| 140 |
-
logging.info("preprocess ended")
|
| 141 |
-
return x
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
@session_logger.set_uuid_logging
|
| 145 |
-
def get_model(args_to_parse):
|
| 146 |
-
logging.info("starting model preparation...")
|
| 147 |
-
os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
|
| 148 |
-
|
| 149 |
-
# global tokenizer, tokenizer
|
| 150 |
-
# Create model
|
| 151 |
-
_tokenizer = AutoTokenizer.from_pretrained(
|
| 152 |
-
args_to_parse.version,
|
| 153 |
-
cache_dir=None,
|
| 154 |
-
model_max_length=args_to_parse.model_max_length,
|
| 155 |
-
padding_side="right",
|
| 156 |
-
use_fast=False,
|
| 157 |
-
)
|
| 158 |
-
_tokenizer.pad_token = _tokenizer.unk_token
|
| 159 |
-
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
| 160 |
-
torch_dtype = torch.float32
|
| 161 |
-
if args_to_parse.precision == "bf16":
|
| 162 |
-
torch_dtype = torch.bfloat16
|
| 163 |
-
elif args_to_parse.precision == "fp16":
|
| 164 |
-
torch_dtype = torch.half
|
| 165 |
-
kwargs = {"torch_dtype": torch_dtype}
|
| 166 |
-
if args_to_parse.load_in_4bit:
|
| 167 |
-
kwargs.update(
|
| 168 |
-
{
|
| 169 |
-
"torch_dtype": torch.half,
|
| 170 |
-
"load_in_4bit": True,
|
| 171 |
-
"quantization_config": BitsAndBytesConfig(
|
| 172 |
-
load_in_4bit=True,
|
| 173 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 174 |
-
bnb_4bit_use_double_quant=True,
|
| 175 |
-
bnb_4bit_quant_type="nf4",
|
| 176 |
-
llm_int8_skip_modules=["visual_model"],
|
| 177 |
-
),
|
| 178 |
-
}
|
| 179 |
-
)
|
| 180 |
-
elif args_to_parse.load_in_8bit:
|
| 181 |
-
kwargs.update(
|
| 182 |
-
{
|
| 183 |
-
"torch_dtype": torch.half,
|
| 184 |
-
"quantization_config": BitsAndBytesConfig(
|
| 185 |
-
llm_int8_skip_modules=["visual_model"],
|
| 186 |
-
load_in_8bit=True,
|
| 187 |
-
),
|
| 188 |
-
}
|
| 189 |
-
)
|
| 190 |
-
_model = LISAForCausalLM.from_pretrained(
|
| 191 |
-
args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs
|
| 192 |
-
)
|
| 193 |
-
_model.config.eos_token_id = _tokenizer.eos_token_id
|
| 194 |
-
_model.config.bos_token_id = _tokenizer.bos_token_id
|
| 195 |
-
_model.config.pad_token_id = _tokenizer.pad_token_id
|
| 196 |
-
_model.get_model().initialize_vision_modules(_model.get_model().config)
|
| 197 |
-
vision_tower = _model.get_model().get_vision_tower()
|
| 198 |
-
vision_tower.to(dtype=torch_dtype)
|
| 199 |
-
if args_to_parse.precision == "bf16":
|
| 200 |
-
_model = _model.bfloat16().cuda()
|
| 201 |
-
elif (
|
| 202 |
-
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
|
| 203 |
-
):
|
| 204 |
-
vision_tower = _model.get_model().get_vision_tower()
|
| 205 |
-
_model.model.vision_tower = None
|
| 206 |
-
import deepspeed
|
| 207 |
-
|
| 208 |
-
model_engine = deepspeed.init_inference(
|
| 209 |
-
model=_model,
|
| 210 |
-
dtype=torch.half,
|
| 211 |
-
replace_with_kernel_inject=True,
|
| 212 |
-
replace_method="auto",
|
| 213 |
-
)
|
| 214 |
-
_model = model_engine.module
|
| 215 |
-
_model.model.vision_tower = vision_tower.half().cuda()
|
| 216 |
-
elif args_to_parse.precision == "fp32":
|
| 217 |
-
_model = _model.float().cuda()
|
| 218 |
-
vision_tower = _model.get_model().get_vision_tower()
|
| 219 |
-
vision_tower.to(device=args_to_parse.local_rank)
|
| 220 |
-
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
|
| 221 |
-
_transform = ResizeLongestSide(args_to_parse.image_size)
|
| 222 |
-
_model.eval()
|
| 223 |
-
logging.info("model preparation ok!")
|
| 224 |
-
return _model, _clip_image_processor, _tokenizer, _transform
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
@session_logger.set_uuid_logging
|
| 228 |
-
def get_inference_model_by_args(args_to_parse):
|
| 229 |
-
logging.info(f"args_to_parse:{args_to_parse}, creating model...")
|
| 230 |
-
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
|
| 231 |
-
logging.info("created model, preparing inference function")
|
| 232 |
-
no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"]
|
| 233 |
-
|
| 234 |
-
@session_logger.set_uuid_logging
|
| 235 |
-
def inference(input_str, input_image):
|
| 236 |
-
## filter out special chars
|
| 237 |
-
|
| 238 |
-
input_str = get_cleaned_input(input_str)
|
| 239 |
-
logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
|
| 240 |
-
logging.info(f"input_str: {input_str}.")
|
| 241 |
-
|
| 242 |
-
## input valid check
|
| 243 |
-
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
|
| 244 |
-
output_str = "[Error] Invalid input: ", input_str
|
| 245 |
-
return error_happened, output_str
|
| 246 |
-
|
| 247 |
-
# Model Inference
|
| 248 |
-
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
|
| 249 |
-
conv.messages = []
|
| 250 |
-
|
| 251 |
-
prompt = input_str
|
| 252 |
-
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
| 253 |
-
if args_to_parse.use_mm_start_end:
|
| 254 |
-
replace_token = (
|
| 255 |
-
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
|
| 256 |
-
)
|
| 257 |
-
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
|
| 258 |
-
|
| 259 |
-
conv.append_message(conv.roles[0], prompt)
|
| 260 |
-
conv.append_message(conv.roles[1], "")
|
| 261 |
-
prompt = conv.get_prompt()
|
| 262 |
-
|
| 263 |
-
image_np = cv2.imread(input_image)
|
| 264 |
-
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
| 265 |
-
original_size_list = [image_np.shape[:2]]
|
| 266 |
-
|
| 267 |
-
image_clip = (
|
| 268 |
-
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
| 269 |
-
"pixel_values"
|
| 270 |
-
][0]
|
| 271 |
-
.unsqueeze(0)
|
| 272 |
-
.cuda()
|
| 273 |
-
)
|
| 274 |
-
logging.info(f"image_clip type: {type(image_clip)}.")
|
| 275 |
-
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
| 276 |
-
|
| 277 |
-
image = transform.apply_image(image_np)
|
| 278 |
-
resize_list = [image.shape[:2]]
|
| 279 |
-
|
| 280 |
-
image = (
|
| 281 |
-
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
| 282 |
-
.unsqueeze(0)
|
| 283 |
-
.cuda()
|
| 284 |
-
)
|
| 285 |
-
logging.info(f"image_clip type: {type(image_clip)}.")
|
| 286 |
-
image = set_image_precision_by_args(image, args_to_parse.precision)
|
| 287 |
-
|
| 288 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
| 289 |
-
input_ids = input_ids.unsqueeze(0).cuda()
|
| 290 |
-
|
| 291 |
-
output_ids, pred_masks = model.evaluate(
|
| 292 |
-
image_clip,
|
| 293 |
-
image,
|
| 294 |
-
input_ids,
|
| 295 |
-
resize_list,
|
| 296 |
-
original_size_list,
|
| 297 |
-
max_new_tokens=512,
|
| 298 |
-
tokenizer=tokenizer,
|
| 299 |
-
)
|
| 300 |
-
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
| 301 |
-
|
| 302 |
-
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
| 303 |
-
text_output = text_output.replace("\n", "").replace(" ", " ")
|
| 304 |
-
text_output = text_output.split("ASSISTANT: ")[-1]
|
| 305 |
-
|
| 306 |
-
logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.")
|
| 307 |
-
save_img = None
|
| 308 |
-
for i, pred_mask in enumerate(pred_masks):
|
| 309 |
-
if pred_mask.shape[0] == 0:
|
| 310 |
-
continue
|
| 311 |
-
|
| 312 |
-
pred_mask = pred_mask.detach().cpu().numpy()[0]
|
| 313 |
-
pred_mask = pred_mask > 0
|
| 314 |
-
|
| 315 |
-
save_img = image_np.copy()
|
| 316 |
-
save_img[pred_mask] = (
|
| 317 |
-
image_np * 0.5
|
| 318 |
-
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
|
| 319 |
-
)[pred_mask]
|
| 320 |
-
|
| 321 |
-
output_str = f"ASSISTANT: {text_output}"
|
| 322 |
-
output_image = no_seg_out if save_img is None else save_img
|
| 323 |
-
logging.info(f"output_image type: {type(output_image)}.")
|
| 324 |
-
return output_image, output_str
|
| 325 |
-
|
| 326 |
-
logging.info("prepared inference function!")
|
| 327 |
-
return inference
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
@session_logger.set_uuid_logging
|
| 331 |
-
def get_gradio_interface(
|
| 332 |
-
fn_inference: Callable
|
| 333 |
-
):
|
| 334 |
-
return gr.Interface(
|
| 335 |
-
fn_inference,
|
| 336 |
-
inputs=[
|
| 337 |
-
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
|
| 338 |
-
gr.Image(type="filepath", label="Input Image")
|
| 339 |
-
],
|
| 340 |
-
outputs=[
|
| 341 |
-
gr.Image(type="pil", label="Segmentation Output"),
|
| 342 |
-
gr.Textbox(lines=1, placeholder=None, label="Text Output")
|
| 343 |
-
],
|
| 344 |
-
title=constants.title,
|
| 345 |
-
description=constants.description,
|
| 346 |
-
article=constants.article,
|
| 347 |
-
examples=constants.examples,
|
| 348 |
-
allow_flagging="auto"
|
| 349 |
-
)
|
| 350 |
|
| 351 |
|
| 352 |
logging.info(f"sys.argv:{sys.argv}.")
|
| 353 |
-
args = parse_args([])
|
| 354 |
logging.info(f"prepared default arguments:{args}.")
|
| 355 |
-
inference_fn = get_inference_model_by_args(args)
|
| 356 |
logging.info(f"prepared inference_fn function:{inference_fn.__name__}, creating gradio interface...")
|
| 357 |
-
io = get_gradio_interface(inference_fn)
|
| 358 |
logging.info("created gradio interface")
|
| 359 |
app = gr.mount_gradio_app(app, io, path=CUSTOM_GRADIO_PATH)
|
| 360 |
logging.info("mounted gradio app within fastapi")
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import os
|
|
|
|
| 3 |
import sys
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from fastapi import FastAPI
|
| 6 |
from fastapi.staticfiles import StaticFiles
|
| 7 |
from fastapi.templating import Jinja2Templates
|
|
|
|
| 8 |
|
| 9 |
+
from app import routes
|
| 10 |
+
from utils import app_helpers, session_logger
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
session_logger.change_logging(logging.DEBUG)
|
| 14 |
|
| 15 |
CUSTOM_GRADIO_PATH = "/"
|
| 16 |
app = FastAPI(title="lisa_app", version="1.0")
|
| 17 |
+
app.include_router(routes.router)
|
| 18 |
|
| 19 |
FASTAPI_STATIC = os.getenv("FASTAPI_STATIC")
|
| 20 |
os.makedirs(FASTAPI_STATIC, exist_ok=True)
|
| 21 |
app.mount("/static", StaticFiles(directory=FASTAPI_STATIC), name="static")
|
| 22 |
templates = Jinja2Templates(directory="templates")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
logging.info(f"sys.argv:{sys.argv}.")
|
| 26 |
+
args = app_helpers.parse_args([])
|
| 27 |
logging.info(f"prepared default arguments:{args}.")
|
| 28 |
+
inference_fn = app_helpers.get_inference_model_by_args(args)
|
| 29 |
logging.info(f"prepared inference_fn function:{inference_fn.__name__}, creating gradio interface...")
|
| 30 |
+
io = app_helpers.get_gradio_interface(inference_fn)
|
| 31 |
logging.info("created gradio interface")
|
| 32 |
app = gr.mount_gradio_app(app, io, path=CUSTOM_GRADIO_PATH)
|
| 33 |
logging.info("mounted gradio app within fastapi")
|
app/routes.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
from fastapi import APIRouter
|
| 4 |
+
|
| 5 |
+
from utils import session_logger
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
router = APIRouter()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@router.get("/health")
|
| 12 |
+
@session_logger.set_uuid_logging
|
| 13 |
+
def health() -> str:
|
| 14 |
+
try:
|
| 15 |
+
logging.info("health check")
|
| 16 |
+
return json.dumps({"msg": "ok"})
|
| 17 |
+
except Exception as e:
|
| 18 |
+
logging.error(f"exception:{e}.")
|
| 19 |
+
return json.dumps({"msg": "request failed"})
|
utils/app_helpers.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
from typing import Callable
|
| 6 |
+
import cv2
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import nh3
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
|
| 13 |
+
|
| 14 |
+
from . import constants, session_logger, utils
|
| 15 |
+
from model.LISA import LISAForCausalLM
|
| 16 |
+
from model.llava import conversation as conversation_lib
|
| 17 |
+
from model.llava.mm_utils import tokenizer_image_token
|
| 18 |
+
from model.segment_anything.utils.transforms import ResizeLongestSide
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
placeholders = utils.create_placeholder_variables()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@session_logger.set_uuid_logging
|
| 25 |
+
def parse_args(args_to_parse):
|
| 26 |
+
parser = argparse.ArgumentParser(description="LISA chat")
|
| 27 |
+
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
|
| 28 |
+
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
|
| 29 |
+
parser.add_argument(
|
| 30 |
+
"--precision",
|
| 31 |
+
default="fp16",
|
| 32 |
+
type=str,
|
| 33 |
+
choices=["fp32", "bf16", "fp16"],
|
| 34 |
+
help="precision for inference",
|
| 35 |
+
)
|
| 36 |
+
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
| 37 |
+
parser.add_argument("--model_max_length", default=512, type=int)
|
| 38 |
+
parser.add_argument("--lora_r", default=8, type=int)
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
|
| 41 |
+
)
|
| 42 |
+
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
|
| 43 |
+
parser.add_argument("--load_in_8bit", action="store_true", default=False)
|
| 44 |
+
parser.add_argument("--load_in_4bit", action="store_true", default=True)
|
| 45 |
+
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
|
| 46 |
+
parser.add_argument(
|
| 47 |
+
"--conv_type",
|
| 48 |
+
default="llava_v1",
|
| 49 |
+
type=str,
|
| 50 |
+
choices=["llava_v1", "llava_llama_2"],
|
| 51 |
+
)
|
| 52 |
+
return parser.parse_args(args_to_parse)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@session_logger.set_uuid_logging
|
| 56 |
+
def get_cleaned_input(input_str):
|
| 57 |
+
logging.info(f"start cleaning of input_str: {input_str}.")
|
| 58 |
+
input_str = nh3.clean(
|
| 59 |
+
input_str,
|
| 60 |
+
tags={
|
| 61 |
+
"a",
|
| 62 |
+
"abbr",
|
| 63 |
+
"acronym",
|
| 64 |
+
"b",
|
| 65 |
+
"blockquote",
|
| 66 |
+
"code",
|
| 67 |
+
"em",
|
| 68 |
+
"i",
|
| 69 |
+
"li",
|
| 70 |
+
"ol",
|
| 71 |
+
"strong",
|
| 72 |
+
"ul",
|
| 73 |
+
},
|
| 74 |
+
attributes={
|
| 75 |
+
"a": {"href", "title"},
|
| 76 |
+
"abbr": {"title"},
|
| 77 |
+
"acronym": {"title"},
|
| 78 |
+
},
|
| 79 |
+
url_schemes={"http", "https", "mailto"},
|
| 80 |
+
link_rel=None,
|
| 81 |
+
)
|
| 82 |
+
logging.info(f"cleaned input_str: {input_str}.")
|
| 83 |
+
return input_str
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
@session_logger.set_uuid_logging
|
| 87 |
+
def set_image_precision_by_args(input_image, precision):
|
| 88 |
+
if precision == "bf16":
|
| 89 |
+
input_image = input_image.bfloat16()
|
| 90 |
+
elif precision == "fp16":
|
| 91 |
+
input_image = input_image.half()
|
| 92 |
+
else:
|
| 93 |
+
input_image = input_image.float()
|
| 94 |
+
return input_image
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@session_logger.set_uuid_logging
|
| 98 |
+
def preprocess(
|
| 99 |
+
x,
|
| 100 |
+
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
|
| 101 |
+
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
|
| 102 |
+
img_size=1024,
|
| 103 |
+
) -> torch.Tensor:
|
| 104 |
+
"""Normalize pixel values and pad to a square input."""
|
| 105 |
+
logging.info("preprocess started")
|
| 106 |
+
# Normalize colors
|
| 107 |
+
x = (x - pixel_mean) / pixel_std
|
| 108 |
+
# Pad
|
| 109 |
+
h, w = x.shape[-2:]
|
| 110 |
+
padh = img_size - h
|
| 111 |
+
padw = img_size - w
|
| 112 |
+
x = F.pad(x, (0, padw, 0, padh))
|
| 113 |
+
logging.info("preprocess ended")
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@session_logger.set_uuid_logging
|
| 118 |
+
def get_model(args_to_parse):
|
| 119 |
+
logging.info("starting model preparation...")
|
| 120 |
+
os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
|
| 121 |
+
|
| 122 |
+
# global tokenizer, tokenizer
|
| 123 |
+
# Create model
|
| 124 |
+
_tokenizer = AutoTokenizer.from_pretrained(
|
| 125 |
+
args_to_parse.version,
|
| 126 |
+
cache_dir=None,
|
| 127 |
+
model_max_length=args_to_parse.model_max_length,
|
| 128 |
+
padding_side="right",
|
| 129 |
+
use_fast=False,
|
| 130 |
+
)
|
| 131 |
+
_tokenizer.pad_token = _tokenizer.unk_token
|
| 132 |
+
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
| 133 |
+
torch_dtype = torch.float32
|
| 134 |
+
if args_to_parse.precision == "bf16":
|
| 135 |
+
torch_dtype = torch.bfloat16
|
| 136 |
+
elif args_to_parse.precision == "fp16":
|
| 137 |
+
torch_dtype = torch.half
|
| 138 |
+
kwargs = {"torch_dtype": torch_dtype}
|
| 139 |
+
if args_to_parse.load_in_4bit:
|
| 140 |
+
kwargs.update(
|
| 141 |
+
{
|
| 142 |
+
"torch_dtype": torch.half,
|
| 143 |
+
"load_in_4bit": True,
|
| 144 |
+
"quantization_config": BitsAndBytesConfig(
|
| 145 |
+
load_in_4bit=True,
|
| 146 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 147 |
+
bnb_4bit_use_double_quant=True,
|
| 148 |
+
bnb_4bit_quant_type="nf4",
|
| 149 |
+
llm_int8_skip_modules=["visual_model"],
|
| 150 |
+
),
|
| 151 |
+
}
|
| 152 |
+
)
|
| 153 |
+
elif args_to_parse.load_in_8bit:
|
| 154 |
+
kwargs.update(
|
| 155 |
+
{
|
| 156 |
+
"torch_dtype": torch.half,
|
| 157 |
+
"quantization_config": BitsAndBytesConfig(
|
| 158 |
+
llm_int8_skip_modules=["visual_model"],
|
| 159 |
+
load_in_8bit=True,
|
| 160 |
+
),
|
| 161 |
+
}
|
| 162 |
+
)
|
| 163 |
+
_model = LISAForCausalLM.from_pretrained(
|
| 164 |
+
args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs
|
| 165 |
+
)
|
| 166 |
+
_model.config.eos_token_id = _tokenizer.eos_token_id
|
| 167 |
+
_model.config.bos_token_id = _tokenizer.bos_token_id
|
| 168 |
+
_model.config.pad_token_id = _tokenizer.pad_token_id
|
| 169 |
+
_model.get_model().initialize_vision_modules(_model.get_model().config)
|
| 170 |
+
vision_tower = _model.get_model().get_vision_tower()
|
| 171 |
+
vision_tower.to(dtype=torch_dtype)
|
| 172 |
+
if args_to_parse.precision == "bf16":
|
| 173 |
+
_model = _model.bfloat16().cuda()
|
| 174 |
+
elif (
|
| 175 |
+
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
|
| 176 |
+
):
|
| 177 |
+
vision_tower = _model.get_model().get_vision_tower()
|
| 178 |
+
_model.model.vision_tower = None
|
| 179 |
+
import deepspeed
|
| 180 |
+
|
| 181 |
+
model_engine = deepspeed.init_inference(
|
| 182 |
+
model=_model,
|
| 183 |
+
dtype=torch.half,
|
| 184 |
+
replace_with_kernel_inject=True,
|
| 185 |
+
replace_method="auto",
|
| 186 |
+
)
|
| 187 |
+
_model = model_engine.module
|
| 188 |
+
_model.model.vision_tower = vision_tower.half().cuda()
|
| 189 |
+
elif args_to_parse.precision == "fp32":
|
| 190 |
+
_model = _model.float().cuda()
|
| 191 |
+
vision_tower = _model.get_model().get_vision_tower()
|
| 192 |
+
vision_tower.to(device=args_to_parse.local_rank)
|
| 193 |
+
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
|
| 194 |
+
_transform = ResizeLongestSide(args_to_parse.image_size)
|
| 195 |
+
_model.eval()
|
| 196 |
+
logging.info("model preparation ok!")
|
| 197 |
+
return _model, _clip_image_processor, _tokenizer, _transform
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
@session_logger.set_uuid_logging
|
| 201 |
+
def get_inference_model_by_args(args_to_parse):
|
| 202 |
+
logging.info(f"args_to_parse:{args_to_parse}, creating model...")
|
| 203 |
+
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
|
| 204 |
+
logging.info("created model, preparing inference function")
|
| 205 |
+
no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"]
|
| 206 |
+
|
| 207 |
+
@session_logger.set_uuid_logging
|
| 208 |
+
def inference(input_str, input_image):
|
| 209 |
+
## filter out special chars
|
| 210 |
+
|
| 211 |
+
input_str = get_cleaned_input(input_str)
|
| 212 |
+
logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
|
| 213 |
+
logging.info(f"input_str: {input_str}.")
|
| 214 |
+
|
| 215 |
+
## input valid check
|
| 216 |
+
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
|
| 217 |
+
output_str = "[Error] Invalid input: ", input_str
|
| 218 |
+
return error_happened, output_str
|
| 219 |
+
|
| 220 |
+
# Model Inference
|
| 221 |
+
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
|
| 222 |
+
conv.messages = []
|
| 223 |
+
|
| 224 |
+
prompt = input_str
|
| 225 |
+
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
| 226 |
+
if args_to_parse.use_mm_start_end:
|
| 227 |
+
replace_token = (
|
| 228 |
+
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
|
| 229 |
+
)
|
| 230 |
+
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
|
| 231 |
+
|
| 232 |
+
conv.append_message(conv.roles[0], prompt)
|
| 233 |
+
conv.append_message(conv.roles[1], "")
|
| 234 |
+
prompt = conv.get_prompt()
|
| 235 |
+
|
| 236 |
+
image_np = cv2.imread(input_image)
|
| 237 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
| 238 |
+
original_size_list = [image_np.shape[:2]]
|
| 239 |
+
|
| 240 |
+
image_clip = (
|
| 241 |
+
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
| 242 |
+
"pixel_values"
|
| 243 |
+
][0]
|
| 244 |
+
.unsqueeze(0)
|
| 245 |
+
.cuda()
|
| 246 |
+
)
|
| 247 |
+
logging.info(f"image_clip type: {type(image_clip)}.")
|
| 248 |
+
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
| 249 |
+
|
| 250 |
+
image = transform.apply_image(image_np)
|
| 251 |
+
resize_list = [image.shape[:2]]
|
| 252 |
+
|
| 253 |
+
image = (
|
| 254 |
+
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
| 255 |
+
.unsqueeze(0)
|
| 256 |
+
.cuda()
|
| 257 |
+
)
|
| 258 |
+
logging.info(f"image_clip type: {type(image_clip)}.")
|
| 259 |
+
image = set_image_precision_by_args(image, args_to_parse.precision)
|
| 260 |
+
|
| 261 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
| 262 |
+
input_ids = input_ids.unsqueeze(0).cuda()
|
| 263 |
+
|
| 264 |
+
output_ids, pred_masks = model.evaluate(
|
| 265 |
+
image_clip,
|
| 266 |
+
image,
|
| 267 |
+
input_ids,
|
| 268 |
+
resize_list,
|
| 269 |
+
original_size_list,
|
| 270 |
+
max_new_tokens=512,
|
| 271 |
+
tokenizer=tokenizer,
|
| 272 |
+
)
|
| 273 |
+
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
| 274 |
+
|
| 275 |
+
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
| 276 |
+
text_output = text_output.replace("\n", "").replace(" ", " ")
|
| 277 |
+
text_output = text_output.split("ASSISTANT: ")[-1]
|
| 278 |
+
|
| 279 |
+
logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.")
|
| 280 |
+
save_img = None
|
| 281 |
+
for i, pred_mask in enumerate(pred_masks):
|
| 282 |
+
if pred_mask.shape[0] == 0:
|
| 283 |
+
continue
|
| 284 |
+
|
| 285 |
+
pred_mask = pred_mask.detach().cpu().numpy()[0]
|
| 286 |
+
pred_mask = pred_mask > 0
|
| 287 |
+
|
| 288 |
+
save_img = image_np.copy()
|
| 289 |
+
save_img[pred_mask] = (
|
| 290 |
+
image_np * 0.5
|
| 291 |
+
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
|
| 292 |
+
)[pred_mask]
|
| 293 |
+
|
| 294 |
+
output_str = f"ASSISTANT: {text_output}"
|
| 295 |
+
output_image = no_seg_out if save_img is None else save_img
|
| 296 |
+
logging.info(f"output_image type: {type(output_image)}.")
|
| 297 |
+
return output_image, output_str
|
| 298 |
+
|
| 299 |
+
logging.info("prepared inference function!")
|
| 300 |
+
return inference
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
@session_logger.set_uuid_logging
|
| 304 |
+
def get_gradio_interface(
|
| 305 |
+
fn_inference: Callable
|
| 306 |
+
):
|
| 307 |
+
return gr.Interface(
|
| 308 |
+
fn_inference,
|
| 309 |
+
inputs=[
|
| 310 |
+
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
|
| 311 |
+
gr.Image(type="filepath", label="Input Image")
|
| 312 |
+
],
|
| 313 |
+
outputs=[
|
| 314 |
+
gr.Image(type="pil", label="Segmentation Output"),
|
| 315 |
+
gr.Textbox(lines=1, placeholder=None, label="Text Output")
|
| 316 |
+
],
|
| 317 |
+
title=constants.title,
|
| 318 |
+
description=constants.description,
|
| 319 |
+
article=constants.article,
|
| 320 |
+
examples=constants.examples,
|
| 321 |
+
allow_flagging="auto"
|
| 322 |
+
)
|