akhaliq3
spaces demo
607ecc1
raw
history blame
7.31 kB
from functools import partial
from typing import Callable, Sequence, Union
import gin
import librosa
import numpy as np
import resampy
import scipy.io.wavfile as wavfile
from .f0_extraction import extract_f0_with_crepe, extract_f0_with_pyin
from .loudness_extraction import extract_perceptual_loudness, extract_rms
from .mfcc_extraction import extract_mfcc
from ...utils import apply, apply_unpack, unzip
def read_audio_files(files: list):
rates_and_audios = apply(wavfile.read, files)
return unzip(rates_and_audios)
def convert_to_float32_audio(audio: np.ndarray):
if audio.dtype == np.float32:
return audio
max_sample_value = np.iinfo(audio.dtype).max
floating_point_audio = audio / max_sample_value
return floating_point_audio.astype(np.float32)
def make_monophonic(audio: np.ndarray, strategy: str = "keep_left"):
# deal with non stereo array formats
if len(audio.shape) == 1:
return audio
elif len(audio.shape) != 2:
raise ValueError("Unknown audio array format.")
# deal with single audio channel
if audio.shape[0] == 1:
return audio[0]
elif audio.shape[1] == 1:
return audio[:, 0]
# deal with more than two channels
elif audio.shape[0] != 2 and audio.shape[1] != 2:
raise ValueError("Expected stereo input audio but got too many channels.")
# put channel first
if audio.shape[1] == 2:
audio = audio.T
# make stereo audio monophonic
if strategy == "keep_left":
return audio[0]
elif strategy == "keep_right":
return audio[1]
elif strategy == "sum":
return np.mean(audio, axis=0)
elif strategy == "diff":
return audio[0] - audio[1]
def normalise_signal(audio: np.ndarray, factor: float):
return audio / factor
def resample_audio(audio: np.ndarray, original_sr: float, target_sr: float):
return resampy.resample(audio, original_sr, target_sr)
def segment_signal(
signal: np.ndarray,
sample_rate: float,
segment_length_in_seconds: float,
hop_length_in_seconds: float,
):
segment_length_in_samples = int(sample_rate * segment_length_in_seconds)
hop_length_in_samples = int(sample_rate * hop_length_in_seconds)
segments = librosa.util.frame(
signal, segment_length_in_samples, hop_length_in_samples
)
return segments
def filter_segments(
threshold: float,
key_segments: np.ndarray,
segments: Sequence[np.ndarray],
):
mean_keys = key_segments.mean(axis=0)
mask = mean_keys > threshold
filtered_segments = apply(
lambda x: x[:, mask] if len(x.shape) == 2 else x[:, :, mask], segments
)
return filtered_segments
def preprocess_single_audio_file(
file: str,
control_decimation_factor: float,
target_sr: float = 16000.0,
segment_length_in_seconds: float = 4.0,
hop_length_in_seconds: float = 2.0,
confidence_threshold: float = 0.85,
f0_extractor: Callable = extract_f0_with_crepe,
loudness_extractor: Callable = extract_perceptual_loudness,
mfcc_extractor: Callable = extract_mfcc,
normalisation_factor: Union[float, None] = None,
):
print("Loading audio file: %s..." % file)
original_sr, audio = wavfile.read(file)
audio = convert_to_float32_audio(audio)
audio = make_monophonic(audio)
if normalisation_factor:
audio = normalise_signal(audio, normalisation_factor)
print("Resampling audio file: %s..." % file)
audio = resample_audio(audio, original_sr, target_sr)
print("Extracting f0 with extractor '%s': %s..." % (f0_extractor.__name__, file))
f0, confidence = f0_extractor(audio)
print(
"Extracting loudness with extractor '%s': %s..."
% (loudness_extractor.__name__, file)
)
loudness = loudness_extractor(audio)
print(
"Extracting MFCC with extractor '%s': %s..." % (mfcc_extractor.__name__, file)
)
mfcc = mfcc_extractor(audio)
print("Segmenting audio file: %s..." % file)
segmented_audio = segment_signal(
audio, target_sr, segment_length_in_seconds, hop_length_in_seconds
)
print("Segmenting control signals: %s..." % file)
segmented_f0 = segment_signal(
f0,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
segmented_confidence = segment_signal(
confidence,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
segmented_loudness = segment_signal(
loudness,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
segmented_mfcc = segment_signal(
mfcc,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
(
filtered_audio,
filtered_f0,
filtered_confidence,
filtered_loudness,
filtered_mfcc,
) = filter_segments(
confidence_threshold,
segmented_confidence,
(
segmented_audio,
segmented_f0,
segmented_confidence,
segmented_loudness,
segmented_mfcc,
),
)
if filtered_audio.shape[-1] == 0:
print("No segments exceeding confidence threshold...")
audio_split, f0_split, confidence_split, loudness_split, mfcc_split = (
[],
[],
[],
[],
[],
)
else:
split = lambda x: [e.squeeze() for e in np.split(x, x.shape[-1], -1)]
audio_split = split(filtered_audio)
f0_split = split(filtered_f0)
confidence_split = split(filtered_confidence)
loudness_split = split(filtered_loudness)
mfcc_split = split(filtered_mfcc)
return audio_split, f0_split, confidence_split, loudness_split, mfcc_split
@gin.configurable
def preprocess_audio(
files: list,
control_decimation_factor: float,
target_sr: float = 16000,
segment_length_in_seconds: float = 4.0,
hop_length_in_seconds: float = 2.0,
confidence_threshold: float = 0.85,
f0_extractor: Callable = extract_f0_with_crepe,
loudness_extractor: Callable = extract_perceptual_loudness,
normalise_audio: bool = False,
):
if normalise_audio:
print("Finding normalisation factor...")
normalisation_factor = 0
for file in files:
_, audio = wavfile.read(file)
audio = convert_to_float32_audio(audio)
audio = make_monophonic(audio)
max_value = np.abs(audio).max()
normalisation_factor = (
max_value if max_value > normalisation_factor else normalisation_factor
)
processor = partial(
preprocess_single_audio_file,
control_decimation_factor=control_decimation_factor,
target_sr=target_sr,
segment_length_in_seconds=segment_length_in_seconds,
hop_length_in_seconds=hop_length_in_seconds,
f0_extractor=f0_extractor,
loudness_extractor=loudness_extractor,
normalisation_factor=None if not normalise_audio else normalisation_factor,
)
for file in files:
yield processor(file)