Spaces:
Runtime error
Runtime error
File size: 7,311 Bytes
607ecc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from functools import partial
from typing import Callable, Sequence, Union
import gin
import librosa
import numpy as np
import resampy
import scipy.io.wavfile as wavfile
from .f0_extraction import extract_f0_with_crepe, extract_f0_with_pyin
from .loudness_extraction import extract_perceptual_loudness, extract_rms
from .mfcc_extraction import extract_mfcc
from ...utils import apply, apply_unpack, unzip
def read_audio_files(files: list):
rates_and_audios = apply(wavfile.read, files)
return unzip(rates_and_audios)
def convert_to_float32_audio(audio: np.ndarray):
if audio.dtype == np.float32:
return audio
max_sample_value = np.iinfo(audio.dtype).max
floating_point_audio = audio / max_sample_value
return floating_point_audio.astype(np.float32)
def make_monophonic(audio: np.ndarray, strategy: str = "keep_left"):
# deal with non stereo array formats
if len(audio.shape) == 1:
return audio
elif len(audio.shape) != 2:
raise ValueError("Unknown audio array format.")
# deal with single audio channel
if audio.shape[0] == 1:
return audio[0]
elif audio.shape[1] == 1:
return audio[:, 0]
# deal with more than two channels
elif audio.shape[0] != 2 and audio.shape[1] != 2:
raise ValueError("Expected stereo input audio but got too many channels.")
# put channel first
if audio.shape[1] == 2:
audio = audio.T
# make stereo audio monophonic
if strategy == "keep_left":
return audio[0]
elif strategy == "keep_right":
return audio[1]
elif strategy == "sum":
return np.mean(audio, axis=0)
elif strategy == "diff":
return audio[0] - audio[1]
def normalise_signal(audio: np.ndarray, factor: float):
return audio / factor
def resample_audio(audio: np.ndarray, original_sr: float, target_sr: float):
return resampy.resample(audio, original_sr, target_sr)
def segment_signal(
signal: np.ndarray,
sample_rate: float,
segment_length_in_seconds: float,
hop_length_in_seconds: float,
):
segment_length_in_samples = int(sample_rate * segment_length_in_seconds)
hop_length_in_samples = int(sample_rate * hop_length_in_seconds)
segments = librosa.util.frame(
signal, segment_length_in_samples, hop_length_in_samples
)
return segments
def filter_segments(
threshold: float,
key_segments: np.ndarray,
segments: Sequence[np.ndarray],
):
mean_keys = key_segments.mean(axis=0)
mask = mean_keys > threshold
filtered_segments = apply(
lambda x: x[:, mask] if len(x.shape) == 2 else x[:, :, mask], segments
)
return filtered_segments
def preprocess_single_audio_file(
file: str,
control_decimation_factor: float,
target_sr: float = 16000.0,
segment_length_in_seconds: float = 4.0,
hop_length_in_seconds: float = 2.0,
confidence_threshold: float = 0.85,
f0_extractor: Callable = extract_f0_with_crepe,
loudness_extractor: Callable = extract_perceptual_loudness,
mfcc_extractor: Callable = extract_mfcc,
normalisation_factor: Union[float, None] = None,
):
print("Loading audio file: %s..." % file)
original_sr, audio = wavfile.read(file)
audio = convert_to_float32_audio(audio)
audio = make_monophonic(audio)
if normalisation_factor:
audio = normalise_signal(audio, normalisation_factor)
print("Resampling audio file: %s..." % file)
audio = resample_audio(audio, original_sr, target_sr)
print("Extracting f0 with extractor '%s': %s..." % (f0_extractor.__name__, file))
f0, confidence = f0_extractor(audio)
print(
"Extracting loudness with extractor '%s': %s..."
% (loudness_extractor.__name__, file)
)
loudness = loudness_extractor(audio)
print(
"Extracting MFCC with extractor '%s': %s..." % (mfcc_extractor.__name__, file)
)
mfcc = mfcc_extractor(audio)
print("Segmenting audio file: %s..." % file)
segmented_audio = segment_signal(
audio, target_sr, segment_length_in_seconds, hop_length_in_seconds
)
print("Segmenting control signals: %s..." % file)
segmented_f0 = segment_signal(
f0,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
segmented_confidence = segment_signal(
confidence,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
segmented_loudness = segment_signal(
loudness,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
segmented_mfcc = segment_signal(
mfcc,
target_sr / (control_decimation_factor or 1),
segment_length_in_seconds,
hop_length_in_seconds,
)
(
filtered_audio,
filtered_f0,
filtered_confidence,
filtered_loudness,
filtered_mfcc,
) = filter_segments(
confidence_threshold,
segmented_confidence,
(
segmented_audio,
segmented_f0,
segmented_confidence,
segmented_loudness,
segmented_mfcc,
),
)
if filtered_audio.shape[-1] == 0:
print("No segments exceeding confidence threshold...")
audio_split, f0_split, confidence_split, loudness_split, mfcc_split = (
[],
[],
[],
[],
[],
)
else:
split = lambda x: [e.squeeze() for e in np.split(x, x.shape[-1], -1)]
audio_split = split(filtered_audio)
f0_split = split(filtered_f0)
confidence_split = split(filtered_confidence)
loudness_split = split(filtered_loudness)
mfcc_split = split(filtered_mfcc)
return audio_split, f0_split, confidence_split, loudness_split, mfcc_split
@gin.configurable
def preprocess_audio(
files: list,
control_decimation_factor: float,
target_sr: float = 16000,
segment_length_in_seconds: float = 4.0,
hop_length_in_seconds: float = 2.0,
confidence_threshold: float = 0.85,
f0_extractor: Callable = extract_f0_with_crepe,
loudness_extractor: Callable = extract_perceptual_loudness,
normalise_audio: bool = False,
):
if normalise_audio:
print("Finding normalisation factor...")
normalisation_factor = 0
for file in files:
_, audio = wavfile.read(file)
audio = convert_to_float32_audio(audio)
audio = make_monophonic(audio)
max_value = np.abs(audio).max()
normalisation_factor = (
max_value if max_value > normalisation_factor else normalisation_factor
)
processor = partial(
preprocess_single_audio_file,
control_decimation_factor=control_decimation_factor,
target_sr=target_sr,
segment_length_in_seconds=segment_length_in_seconds,
hop_length_in_seconds=hop_length_in_seconds,
f0_extractor=f0_extractor,
loudness_extractor=loudness_extractor,
normalisation_factor=None if not normalise_audio else normalisation_factor,
)
for file in files:
yield processor(file)
|