File size: 6,879 Bytes
6d6c49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32f90c
 
6d6c49f
 
 
 
 
 
d32f90c
6d6c49f
d32f90c
6d6c49f
 
d32f90c
6d6c49f
 
 
 
 
 
 
 
 
 
 
d32f90c
 
6d6c49f
 
 
 
 
d32f90c
6d6c49f
 
 
 
 
9656c26
6d6c49f
 
 
 
 
 
d32f90c
6d6c49f
 
 
 
d32f90c
 
6d6c49f
 
 
 
 
 
 
 
 
 
 
d32f90c
6d6c49f
 
d32f90c
6d6c49f
d32f90c
6d6c49f
 
 
 
 
 
 
 
d32f90c
6d6c49f
 
 
 
 
 
 
 
d32f90c
 
6d6c49f
 
d32f90c
6d6c49f
d32f90c
6d6c49f
 
 
 
 
 
 
 
 
 
d32f90c
6d6c49f
 
d32f90c
9656c26
6d6c49f
 
 
 
 
 
 
 
 
 
 
 
d32f90c
9656c26
 
d32f90c
 
6d6c49f
 
 
 
d32f90c
9656c26
 
d32f90c
 
9656c26
d32f90c
 
 
 
 
 
 
 
 
 
9656c26
d32f90c
9656c26
 
 
 
 
d32f90c
 
 
 
6d6c49f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import torch
import os
import time

# --- Try to import ctransformers for GGUF, provide helpful message if not found ---
try:
    from ctransformers import AutoModelForCausalLM as AutoModelForCausalLM_GGUF
    from transformers import AutoTokenizer, AutoModelForCausalLM 
    GGUF_AVAILABLE = True
except ImportError:
    GGUF_AVAILABLE = False
    print("WARNING: 'ctransformers' not found. This app relies on it for efficient CPU inference.")
    print("Please install it with: pip install ctransformers transformers")
    from transformers import AutoTokenizer, AutoModelForCausalLM

# --- Configuration for Models and Generation ---
ORIGINAL_MODEL_ID = "HuggingFaceTB/SmolLM2-360M-Instruct"
GGUF_MODEL_ID = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" 
GGUF_MODEL_FILENAME = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf" 

# --- Generation Parameters ---
MAX_NEW_TOKENS = 256
TEMPERATURE = 0.7
TOP_K = 50
TOP_P = 0.95
DO_SAMPLE = True 

# Global model and tokenizer
model = None
tokenizer = None
device = "cpu" 

# --- Model Loading Function ---
def load_model_for_zerocpu():
    global model, tokenizer, device

    if GGUF_AVAILABLE:
        print(f"Attempting to load GGUF model '{GGUF_MODEL_ID}' (file: '{GGUF_MODEL_FILENAME}') for ZeroCPU...")
        try:
            model = AutoModelForCausalLM_GGUF.from_pretrained(
                GGUF_MODEL_ID,
                model_file=GGUF_MODEL_FILENAME,
                model_type="llama", 
                gpu_layers=0 
            )
            tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_MODEL_ID)
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
            print(f"GGUF model '{GGUF_MODEL_ID}' loaded successfully for CPU.")
            return 
        except Exception as e:
            print(f"WARNING: Could not load GGUF model '{GGUF_MODEL_ID}' from '{GGUF_MODEL_FILENAME}': {e}")
            print(f"Falling back to standard Hugging Face model '{ORIGINAL_MODEL_ID}' for CPU (will be slower without GGUF quantization).")
    else:
        print("WARNING: ctransformers is not available. Will load standard Hugging Face model directly.")

    print(f"Loading standard Hugging Face model '{ORIGINAL_MODEL_ID}' for CPU...")
    try:
        model = AutoModelForCausalLM.from_pretrained(ORIGINAL_MODEL_ID)
        tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_MODEL_ID)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        model.to(device) 
        print(f"Standard model '{ORIGINAL_MODEL_ID}' loaded successfully on CPU.")
    except Exception as e:
        print(f"CRITICAL ERROR: Could not load standard model '{ORIGINAL_MODEL_ID}' on CPU: {e}")
        print("Please ensure the model ID is correct, you have enough RAM, and dependencies are installed.")
        model = None 
        tokenizer = None 

# --- Inference Function for Gradio ChatInterface ---
def predict_chat(message: str, history: list):
    if model is None or tokenizer is None:
        yield "Error: Model or tokenizer failed to load. Please check the Space logs for details."
        return

    messages = [{"role": "system", "content": "You are a friendly chatbot."}]
    for human_msg, ai_msg in history:
        messages.append({"role": "user", "content": human_msg})
        messages.append({"role": "assistant", "content": ai_msg})
    messages.append({"role": "user", "content": message})

    generated_text = ""
    start_time = time.time()

    if isinstance(model, AutoModelForCausalLM_GGUF):
        prompt_input = ""
        for msg in messages:
            if msg["role"] == "system":
                prompt_input += f"{msg['content']}\n"
            elif msg["role"] == "user":
                prompt_input += f"User: {msg['content']}\n"
            elif msg["role"] == "assistant":
                prompt_input += f"Assistant: {msg['content']}\n"
        prompt_input += "Assistant:"

        for token in model.generate(
            prompt_input,
            max_new_tokens=MAX_NEW_TOKENS,
            temperature=TEMPERATURE,
            top_k=TOP_K,
            top_p=TOP_P,
            do_sample=DO_SAMPLE,
            repetition_penalty=1.1,
            stop=["User:", "\nUser", "\n#", "\n##", "<|endoftext|>"] 
        ):
            generated_text += token
            yield generated_text 

    else:
        input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)

        outputs = model.generate(
            inputs,
            max_new_tokens=MAX_NEW_TOKENS,
            temperature=TEMPERATURE,
            top_k=TOP_K,
            top_p=TOP_P,
            do_sample=DO_SAMPLE,
            pad_token_id=tokenizer.pad_token_id
        )
        generated_text = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip()
        yield generated_text

    end_time = time.time()
    print(f"Inference Time for this turn: {end_time - start_time:.2f} seconds")

# --- Gradio Interface Setup ---
if __name__ == "__main__":
    load_model_for_zerocpu()

    initial_chatbot_message = (
        "Hello! I'm an AI assistant. I'm currently running in a CPU-only "
        "environment for efficient demonstration. How can I help you today?"
    )

    chatbot_component = gr.Chatbot(height=500, type='messages') 

    with gr.Blocks(theme="soft") as demo:
        gr.Markdown(
            f"# SmolLM2-360M-Instruct (or TinyLlama GGUF) on ZeroCPU\n"
            f"This Space demonstrates an LLM for efficient CPU-only inference. "
            f"**Note:** For ZeroCPU, this app prioritizes `{GGUF_MODEL_ID}` (a GGUF-quantized model "
            f"like TinyLlama) due to better CPU performance than `{ORIGINAL_MODEL_ID}` "
            f"without GGUF. Expect varied responses each run due to randomized generation."
        )

        # This is the key change: explicitly placing the chat_interface component
        chat_interface = gr.ChatInterface(
            fn=predict_chat,
            chatbot=chatbot_component,
            textbox=gr.Textbox(
                placeholder="Ask me a question...",
                container=False,
                scale=7
            ),
            examples=[ 
                ["What is the capital of France?"],
                ["Can you tell me a fun fact about outer space?"],
                ["What's the best way to stay motivated?"],
            ],
            cache_examples=False,
        )

        # Now explicitly place the chat_interface component into the Blocks layout
        chat_interface.render()

        # The clear button is typically below the chat interface
        gr.ClearButton(components=[chatbot_component]) 

        chatbot_component.value = [[None, initial_chatbot_message]]


    demo.launch()