Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
|
6 |
+
# --- Try to import ctransformers for GGUF, provide helpful message if not found ---
|
7 |
+
# We try to import ctransformers first as it's the preferred method for ZeroCPU efficiency
|
8 |
+
try:
|
9 |
+
from ctransformers import AutoModelForCausalLM as AutoModelForCausalLM_GGUF
|
10 |
+
# We still need AutoTokenizer from transformers for standard tokenizing
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
GGUF_AVAILABLE = True
|
13 |
+
except ImportError:
|
14 |
+
GGUF_AVAILABLE = False
|
15 |
+
print("WARNING: 'ctransformers' not found. This app relies on it for efficient CPU inference.")
|
16 |
+
print("Please install it with: pip install ctransformers transformers")
|
17 |
+
# If ctransformers isn't available, we'll fall back to standard transformers loading, which is slower on CPU.
|
18 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
19 |
+
|
20 |
+
# --- Configuration for Models and Generation ---
|
21 |
+
# Original model (for reference, or if a GPU is detected, though ZeroCPU is target)
|
22 |
+
ORIGINAL_MODEL_ID = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
23 |
+
|
24 |
+
# !!! IMPORTANT !!! For efficient ZeroCPU (CPU-only) inference,
|
25 |
+
# a GGUF quantized model is HIGHLY RECOMMENDED.
|
26 |
+
# SmolLM2-360M-Instruct does NOT have a readily available GGUF version from common providers.
|
27 |
+
# Therefore, for ZeroCPU deployment, this app will use a common, small GGUF model by default.
|
28 |
+
# If you find a GGUF for SmolLM2 later, you can update these:
|
29 |
+
GGUF_MODEL_ID = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" # Recommended GGUF placeholder for ZeroCPU
|
30 |
+
GGUF_MODEL_FILENAME = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf" # Corresponding GGUF file name
|
31 |
+
|
32 |
+
# --- Generation Parameters ---
|
33 |
+
MAX_NEW_TOKENS = 256
|
34 |
+
TEMPERATURE = 0.7
|
35 |
+
TOP_K = 50
|
36 |
+
TOP_P = 0.95
|
37 |
+
DO_SAMPLE = True # Important for varied responses
|
38 |
+
|
39 |
+
# Global model and tokenizer variables
|
40 |
+
model = None
|
41 |
+
tokenizer = None
|
42 |
+
device = "cpu" # Explicitly set to CPU for ZeroCPU deployment
|
43 |
+
|
44 |
+
# --- Model Loading Function ---
|
45 |
+
def load_model_for_zerocpu():
|
46 |
+
global model, tokenizer, device
|
47 |
+
|
48 |
+
# Attempt to load the GGUF model first for efficiency on ZeroCPU
|
49 |
+
if GGUF_AVAILABLE:
|
50 |
+
print(f"Attempting to load GGUF model '{GGUF_MODEL_ID}' (file: '{GGUF_MODEL_FILENAME}') for ZeroCPU...")
|
51 |
+
try:
|
52 |
+
model = AutoModelForCausalLM_GGUF.from_pretrained(
|
53 |
+
GGUF_MODEL_ID,
|
54 |
+
model_file=GGUF_MODEL_FILENAME,
|
55 |
+
model_type="llama", # Most GGUF models are Llama-based (TinyLlama is)
|
56 |
+
gpu_layers=0 # Ensures it runs on CPU, not GPU
|
57 |
+
)
|
58 |
+
# Use the tokenizer from the original SmolLM2 for chat template consistency
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_MODEL_ID)
|
60 |
+
if tokenizer.pad_token is None:
|
61 |
+
tokenizer.pad_token = tokenizer.eos_token
|
62 |
+
print(f"GGUF model '{GGUF_MODEL_ID}' loaded successfully for CPU.")
|
63 |
+
return # Exit function if GGUF model loaded successfully
|
64 |
+
except Exception as e:
|
65 |
+
print(f"WARNING: Could not load GGUF model '{GGUF_MODEL_ID}' from '{GGUF_MODEL_FILENAME}': {e}")
|
66 |
+
print(f"Falling back to standard Hugging Face model '{ORIGINAL_MODEL_ID}' for CPU (will be slower without GGUF quantization).")
|
67 |
+
# Continue to the next block to try loading the standard HF model
|
68 |
+
else:
|
69 |
+
print("WARNING: ctransformers is not available. Will load standard Hugging Face model directly.")
|
70 |
+
|
71 |
+
# Fallback/alternative: Load the standard Hugging Face model (will be slower on CPU without GGUF)
|
72 |
+
print(f"Loading standard Hugging Face model '{ORIGINAL_MODEL_ID}' for CPU...")
|
73 |
+
try:
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(ORIGINAL_MODEL_ID)
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_MODEL_ID)
|
76 |
+
if tokenizer.pad_token is None:
|
77 |
+
tokenizer.pad_token = tokenizer.eos_token
|
78 |
+
model.to(device) # Explicitly move model to CPU
|
79 |
+
print(f"Standard model '{ORIGINAL_MODEL_ID}' loaded successfully on CPU.")
|
80 |
+
except Exception as e:
|
81 |
+
print(f"CRITICAL ERROR: Could not load standard model '{ORIGINAL_MODEL_ID}' on CPU: {e}")
|
82 |
+
print("Please ensure the model ID is correct, you have enough RAM, and dependencies are installed.")
|
83 |
+
model = None # Indicate failure to load
|
84 |
+
tokenizer = None # Indicate failure to load
|
85 |
+
|
86 |
+
# --- Inference Function for Gradio ChatInterface ---
|
87 |
+
def predict_chat(message: str, history: list):
|
88 |
+
# 'history' is a list of lists, where each inner list is [user_message, bot_message]
|
89 |
+
# 'message' is the current user input
|
90 |
+
|
91 |
+
if model is None or tokenizer is None:
|
92 |
+
yield "Error: Model or tokenizer failed to load. Please check the Space logs for details."
|
93 |
+
return
|
94 |
+
|
95 |
+
# Build the full conversation history for the model's chat template
|
96 |
+
messages = [{"role": "system", "content": "You are a friendly chatbot."}]
|
97 |
+
for human_msg, ai_msg in history:
|
98 |
+
messages.append({"role": "user", "content": human_msg})
|
99 |
+
messages.append({"role": "assistant", "content": ai_msg})
|
100 |
+
messages.append({"role": "user", "content": message}) # Add the current user message
|
101 |
+
|
102 |
+
generated_text = ""
|
103 |
+
|
104 |
+
start_time = time.time() # Start timing for the current turn
|
105 |
+
|
106 |
+
if isinstance(model, AutoModelForCausalLM_GGUF): # Check if the loaded model is from ctransformers
|
107 |
+
# For ctransformers (GGUF), manually construct a simple prompt string
|
108 |
+
prompt_input = ""
|
109 |
+
for msg in messages:
|
110 |
+
if msg["role"] == "system":
|
111 |
+
prompt_input += f"{msg['content']}\n"
|
112 |
+
elif msg["role"] == "user":
|
113 |
+
prompt_input += f"User: {msg['content']}\n"
|
114 |
+
elif msg["role"] == "assistant":
|
115 |
+
prompt_input += f"Assistant: {msg['content']}\n"
|
116 |
+
prompt_input += "Assistant:" # Instruct the model to generate the assistant's response
|
117 |
+
|
118 |
+
# Use the GGUF model's generate method
|
119 |
+
for token in model.generate(
|
120 |
+
prompt_input,
|
121 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
122 |
+
temperature=TEMPERATURE,
|
123 |
+
top_k=TOP_K,
|
124 |
+
top_p=TOP_P,
|
125 |
+
do_sample=DO_SAMPLE,
|
126 |
+
repetition_penalty=1.1, # Common for GGUF models
|
127 |
+
stop=["User:", "\nUser", "\n#", "\n##", "<|endoftext|>"] # Common stop tokens
|
128 |
+
):
|
129 |
+
generated_text += token
|
130 |
+
yield generated_text # Yield partial response for streaming in Gradio
|
131 |
+
|
132 |
+
else: # If standard Hugging Face transformers model was loaded (slower on CPU)
|
133 |
+
# Apply the tokenizer's chat template
|
134 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
135 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
136 |
+
|
137 |
+
# Generate the response
|
138 |
+
outputs = model.generate(
|
139 |
+
inputs,
|
140 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
141 |
+
temperature=TEMPERATURE,
|
142 |
+
top_k=TOP_K,
|
143 |
+
top_p=TOP_P,
|
144 |
+
do_sample=DO_SAMPLE,
|
145 |
+
pad_token_id=tokenizer.pad_token_id # Important for generation
|
146 |
+
)
|
147 |
+
# Decode only the newly generated tokens
|
148 |
+
generated_text = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip()
|
149 |
+
yield generated_text # Yield the full response at once (transformers.generate doesn't stream by default)
|
150 |
+
|
151 |
+
end_time = time.time()
|
152 |
+
print(f"Inference Time for this turn: {end_time - start_time:.2f} seconds")
|
153 |
+
|
154 |
+
|
155 |
+
# --- Gradio Interface Setup ---
|
156 |
+
if __name__ == "__main__":
|
157 |
+
# Load the model globally when the Gradio app starts
|
158 |
+
load_model_for_zerocpu()
|
159 |
+
|
160 |
+
# Define a custom startup message for the chatbot
|
161 |
+
initial_chatbot_message = (
|
162 |
+
"Hello! I'm an AI assistant. I'm currently running in a CPU-only "
|
163 |
+
"environment for efficient demonstration. How can I help you today?"
|
164 |
+
)
|
165 |
+
|
166 |
+
demo = gr.ChatInterface(
|
167 |
+
fn=predict_chat, # The function that handles chat prediction
|
168 |
+
chatbot=gr.Chatbot(height=500), # The chat display area
|
169 |
+
textbox=gr.Textbox(
|
170 |
+
placeholder="Ask me a question...",
|
171 |
+
container=False,
|
172 |
+
scale=7
|
173 |
+
),
|
174 |
+
title="SmolLM2-360M-Instruct (or TinyLlama GGUF) on ZeroCPU",
|
175 |
+
description=(
|
176 |
+
f"This Space demonstrates an LLM for efficient CPU-only inference. "
|
177 |
+
f"**Note:** For ZeroCPU, this app prioritizes `{GGUF_MODEL_ID}` (a GGUF-quantized model "
|
178 |
+
f"like TinyLlama) due to better CPU performance than `{ORIGINAL_MODEL_ID}` "
|
179 |
+
f"without GGUF. Expect varied responses each run due to randomized generation."
|
180 |
+
),
|
181 |
+
theme="soft",
|
182 |
+
examples=[ # Pre-defined examples for quick testing
|
183 |
+
["What is the capital of France?"],
|
184 |
+
["Can you tell me a fun fact about outer space?"],
|
185 |
+
["What's the best way to stay motivated?"],
|
186 |
+
],
|
187 |
+
cache_examples=False, # Important: Ensures examples run inference each time, not from cache
|
188 |
+
clear_btn="Clear Chat", # Button to clear the conversation
|
189 |
+
# Custom message to start the conversation from the assistant
|
190 |
+
initial_chatbot_message=initial_chatbot_message
|
191 |
+
)
|
192 |
+
|
193 |
+
# Launch the Gradio app
|
194 |
+
# `share=True` creates a public link (useful for testing, but not needed on HF Spaces)
|
195 |
+
# `server_name="0.0.0.0"` and `server_port=7860` are typically default for HF Spaces
|
196 |
+
demo.launch()
|