|
|
|
from typing import Any, Dict, Optional, Union, Tuple |
|
from dataclasses import dataclass |
|
|
|
import re |
|
import torch |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import PeftAdapterMixin |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttentionProcessor, |
|
AttnProcessor, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.embeddings import ( |
|
GaussianFourierProjection, |
|
TimestepEmbedding, |
|
Timesteps, |
|
) |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_version, |
|
logging, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.models.normalization import ( |
|
AdaLayerNormSingle, |
|
AdaLayerNormContinuous, |
|
FP32LayerNorm, |
|
LayerNorm, |
|
) |
|
|
|
from ..attention_processor import FusedFluxAttnProcessor2_0, FluxAttnProcessor2_0 |
|
from ..attention import FluxTransformerBlock, FluxSingleTransformerBlock |
|
|
|
import step1x3d_geometry |
|
from step1x3d_geometry.utils.base import BaseModule |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Transformer1DModelOutput: |
|
sample: torch.FloatTensor |
|
|
|
|
|
class FluxTransformer1DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): |
|
r""" |
|
The Transformer model introduced in Flux. |
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-la |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
The number of heads to use for multi-head attention. |
|
width (`int`, *optional*, defaults to 2048): |
|
Maximum sequence length in latent space (equivalent to max_seq_length in Transformers). |
|
Determines the first dimension size of positional embedding matrices[1](@ref). |
|
in_channels (`int`, *optional*, defaults to 64): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): |
|
The number of layers of Transformer blocks to use. |
|
cross_attention_dim (`int`, *optional*): |
|
Dimensionality of conditional embeddings for cross-attention mechanisms |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"] |
|
_skip_layerwise_casting_patterns = ["pos_embed", "norm"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
width: int = 2048, |
|
in_channels: int = 4, |
|
num_layers: int = 19, |
|
num_single_layers: int = 38, |
|
cross_attention_dim: int = 768, |
|
): |
|
super().__init__() |
|
|
|
self.out_channels = in_channels |
|
self.num_heads = num_attention_heads |
|
self.inner_dim = width |
|
|
|
|
|
|
|
time_embed_dim, timestep_input_dim = self._set_time_proj( |
|
"positional", |
|
inner_dim=self.inner_dim, |
|
flip_sin_to_cos=False, |
|
freq_shift=0, |
|
time_embedding_dim=None, |
|
) |
|
self.time_proj = TimestepEmbedding( |
|
timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim |
|
) |
|
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True) |
|
self.proj_cross_attention = nn.Linear( |
|
self.config.cross_attention_dim, self.inner_dim, bias=True |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=width // num_attention_heads, |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
self.single_transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxSingleTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=width // num_attention_heads, |
|
) |
|
for _ in range(self.config.num_single_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = AdaLayerNormContinuous( |
|
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 |
|
) |
|
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_time_proj( |
|
self, |
|
time_embedding_type: str, |
|
inner_dim: int, |
|
flip_sin_to_cos: bool, |
|
freq_shift: float, |
|
time_embedding_dim: int, |
|
) -> Tuple[int, int]: |
|
if time_embedding_type == "fourier": |
|
time_embed_dim = time_embedding_dim or inner_dim * 2 |
|
if time_embed_dim % 2 != 0: |
|
raise ValueError( |
|
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}." |
|
) |
|
self.time_embed = GaussianFourierProjection( |
|
time_embed_dim // 2, |
|
set_W_to_weight=False, |
|
log=False, |
|
flip_sin_to_cos=flip_sin_to_cos, |
|
) |
|
timestep_input_dim = time_embed_dim |
|
elif time_embedding_type == "positional": |
|
time_embed_dim = time_embedding_dim or inner_dim * 4 |
|
|
|
self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) |
|
timestep_input_dim = inner_dim |
|
else: |
|
raise ValueError( |
|
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." |
|
) |
|
|
|
return time_embed_dim, timestep_input_dim |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError( |
|
"`fuse_qkv_projections()` is not supported for models having added KV projections." |
|
) |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
self.set_attn_processor(FusedFluxAttnProcessor2_0()) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
self.set_attn_processor(FluxAttnProcessor2_0()) |
|
|
|
|
|
def enable_forward_chunking( |
|
self, chunk_size: Optional[int] = None, dim: int = 0 |
|
) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward( |
|
module: torch.nn.Module, chunk_size: int, dim: int |
|
): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
|
|
def disable_forward_chunking(self): |
|
def fn_recursive_feed_forward( |
|
module: torch.nn.Module, chunk_size: int, dim: int |
|
): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, None, 0) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.Tensor], |
|
timestep: Union[int, float, torch.LongTensor], |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`HunyuanDiT2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch size, dim, latents_size)`): |
|
The input tensor. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. |
|
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. |
|
encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. |
|
return_dict: bool |
|
Whether to return a dictionary. |
|
""" |
|
|
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if ( |
|
attention_kwargs is not None |
|
and attention_kwargs.get("scale", None) is not None |
|
): |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
_, N, _ = hidden_states.shape |
|
|
|
|
|
|
|
|
|
temb = self.time_embed(timestep).to(hidden_states.dtype) |
|
temb = self.time_proj(temb) |
|
|
|
hidden_states = self.proj_in(hidden_states) |
|
encoder_hidden_states = self.proj_cross_attention(encoder_hidden_states) |
|
|
|
for layer, block in enumerate(self.transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
encoder_hidden_states, hidden_states = ( |
|
torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
None, |
|
attention_kwargs, |
|
) |
|
) |
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=None, |
|
joint_attention_kwargs=attention_kwargs, |
|
) |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for layer, block in enumerate(self.single_transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
temb, |
|
None, |
|
attention_kwargs, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
temb=temb, |
|
image_rotary_emb=None, |
|
joint_attention_kwargs=attention_kwargs, |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (hidden_states,) |
|
|
|
return Transformer1DModelOutput(sample=hidden_states) |
|
|
|
|
|
@step1x3d_geometry.register("flux-denoiser") |
|
class FluxDenoiser(BaseModule): |
|
@dataclass |
|
class Config(BaseModule.Config): |
|
pretrained_model_name_or_path: Optional[str] = None |
|
input_channels: int = 32 |
|
width: int = 768 |
|
layers: int = 12 |
|
num_single_layers: int = 12 |
|
num_heads: int = 16 |
|
condition_dim: int = 1024 |
|
multi_condition_type: str = "in_context" |
|
use_visual_condition: bool = False |
|
visual_condition_dim: int = 1024 |
|
n_views: int = 1 |
|
use_caption_condition: bool = False |
|
caption_condition_dim: int = 1024 |
|
use_label_condition: bool = False |
|
label_condition_dim: int = 1024 |
|
|
|
identity_init: bool = False |
|
|
|
cfg: Config |
|
|
|
def configure(self) -> None: |
|
assert ( |
|
self.cfg.multi_condition_type == "in_context" |
|
), "Flux Denoiser only support in_context learning of multiple conditions" |
|
self.dit_model = FluxTransformer1DModel( |
|
num_attention_heads=self.cfg.num_heads, |
|
width=self.cfg.width, |
|
in_channels=self.cfg.input_channels, |
|
num_layers=self.cfg.layers, |
|
num_single_layers=self.cfg.num_single_layers, |
|
cross_attention_dim=self.cfg.condition_dim, |
|
) |
|
if ( |
|
self.cfg.use_visual_condition |
|
and self.cfg.visual_condition_dim != self.cfg.condition_dim |
|
): |
|
self.proj_visual_condtion = nn.Sequential( |
|
nn.RMSNorm(self.cfg.visual_condition_dim), |
|
nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim), |
|
) |
|
if ( |
|
self.cfg.use_caption_condition |
|
and self.cfg.caption_condition_dim != self.cfg.condition_dim |
|
): |
|
self.proj_caption_condtion = nn.Sequential( |
|
nn.RMSNorm(self.cfg.caption_condition_dim), |
|
nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim), |
|
) |
|
if ( |
|
self.cfg.use_label_condition |
|
and self.cfg.label_condition_dim != self.cfg.condition_dim |
|
): |
|
self.proj_label_condtion = nn.Sequential( |
|
nn.RMSNorm(self.cfg.label_condition_dim), |
|
nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim), |
|
) |
|
|
|
if self.cfg.identity_init: |
|
self.identity_initialize() |
|
|
|
if self.cfg.pretrained_model_name_or_path: |
|
print( |
|
f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}" |
|
) |
|
ckpt = torch.load( |
|
self.cfg.pretrained_model_name_or_path, |
|
map_location="cpu", |
|
weights_only=True, |
|
) |
|
if "state_dict" in ckpt.keys(): |
|
ckpt = ckpt["state_dict"] |
|
|
|
self.load_state_dict(ckpt, strict=True) |
|
|
|
def identity_initialize(self): |
|
for block in self.dit_model.blocks: |
|
nn.init.constant_(block.attn.c_proj.weight, 0) |
|
nn.init.constant_(block.attn.c_proj.bias, 0) |
|
nn.init.constant_(block.cross_attn.c_proj.weight, 0) |
|
nn.init.constant_(block.cross_attn.c_proj.bias, 0) |
|
nn.init.constant_(block.mlp.c_proj.weight, 0) |
|
nn.init.constant_(block.mlp.c_proj.bias, 0) |
|
|
|
def forward( |
|
self, |
|
model_input: torch.FloatTensor, |
|
timestep: torch.LongTensor, |
|
visual_condition: Optional[torch.FloatTensor] = None, |
|
caption_condition: Optional[torch.FloatTensor] = None, |
|
label_condition: Optional[torch.FloatTensor] = None, |
|
attention_kwargs: Dict[str, torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
r""" |
|
Args: |
|
model_input (torch.FloatTensor): [bs, n_data, c] |
|
timestep (torch.LongTensor): [bs,] |
|
visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c] |
|
caption_condition (torch.FloatTensor): [bs, text_context_tokens, c] |
|
label_condition (torch.FloatTensor): [bs, c] |
|
|
|
Returns: |
|
sample (torch.FloatTensor): [bs, n_data, c] |
|
|
|
""" |
|
|
|
B, n_data, _ = model_input.shape |
|
|
|
|
|
condition = [] |
|
if self.cfg.use_visual_condition: |
|
assert visual_condition.shape[-1] == self.cfg.visual_condition_dim |
|
if self.cfg.visual_condition_dim != self.cfg.condition_dim: |
|
visual_condition = self.proj_visual_condtion(visual_condition) |
|
condition.append(visual_condition) |
|
if self.cfg.use_caption_condition: |
|
assert caption_condition.shape[-1] == self.cfg.caption_condition_dim |
|
if self.cfg.caption_condition_dim != self.cfg.condition_dim: |
|
caption_condition = self.proj_caption_condtion(caption_condition) |
|
condition.append(caption_condition) |
|
if self.cfg.use_label_condition: |
|
assert label_condition.shape[-1] == self.cfg.label_condition_dim |
|
if self.cfg.label_condition_dim != self.cfg.condition_dim: |
|
label_condition = self.proj_label_condtion(label_condition) |
|
condition.append(label_condition) |
|
|
|
|
|
output = self.dit_model( |
|
model_input, |
|
timestep, |
|
torch.cat(condition, dim=1), |
|
attention_kwargs, |
|
return_dict=return_dict, |
|
) |
|
|
|
return output |
|
|