File size: 23,088 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# Some parts of this file are adapted from Hugging Face Diffusers library.
from typing import Any, Dict, Optional, Union, Tuple
from dataclasses import dataclass

import re
import torch
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention_processor import (
    Attention,
    AttentionProcessor,
    AttnProcessor,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import (
    GaussianFourierProjection,
    TimestepEmbedding,
    Timesteps,
)
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_version,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.models.normalization import (
    AdaLayerNormSingle,
    AdaLayerNormContinuous,
    FP32LayerNorm,
    LayerNorm,
)

from ..attention_processor import FusedFluxAttnProcessor2_0, FluxAttnProcessor2_0
from ..attention import FluxTransformerBlock, FluxSingleTransformerBlock

import step1x3d_geometry
from step1x3d_geometry.utils.base import BaseModule

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class Transformer1DModelOutput:
    sample: torch.FloatTensor


class FluxTransformer1DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    r"""
    The Transformer model introduced in Flux.

    Reference: https://blackforestlabs.ai/announcing-black-forest-la

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16):
            The number of heads to use for multi-head attention.
        width (`int`, *optional*, defaults to 2048):
            Maximum sequence length in latent space (equivalent to max_seq_length in Transformers).
            Determines the first dimension size of positional embedding matrices[1](@ref).
        in_channels (`int`, *optional*, defaults to 64):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1):
            The number of layers of Transformer blocks to use.
        cross_attention_dim (`int`, *optional*):
            Dimensionality of conditional embeddings for cross-attention mechanisms
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
    _skip_layerwise_casting_patterns = ["pos_embed", "norm"]

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        width: int = 2048,
        in_channels: int = 4,
        num_layers: int = 19,
        num_single_layers: int = 38,
        cross_attention_dim: int = 768,
    ):
        super().__init__()
        # Set some common variables used across the board.
        self.out_channels = in_channels
        self.num_heads = num_attention_heads
        self.inner_dim = width

        # self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        # self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
        time_embed_dim, timestep_input_dim = self._set_time_proj(
            "positional",
            inner_dim=self.inner_dim,
            flip_sin_to_cos=False,
            freq_shift=0,
            time_embedding_dim=None,
        )
        self.time_proj = TimestepEmbedding(
            timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim
        )
        self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True)
        self.proj_cross_attention = nn.Linear(
            self.config.cross_attention_dim, self.inner_dim, bias=True
        )

        # 2. Initialize the transformer blocks.
        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=width // num_attention_heads,
                )
                for _ in range(self.config.num_layers)
            ]
        )
        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=width // num_attention_heads,
                )
                for _ in range(self.config.num_single_layers)
            ]
        )

        # 3. Output blocks.
        self.norm_out = AdaLayerNormContinuous(
            self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
        )
        self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True)

        self.gradient_checkpointing = False

    def _set_time_proj(
        self,
        time_embedding_type: str,
        inner_dim: int,
        flip_sin_to_cos: bool,
        freq_shift: float,
        time_embedding_dim: int,
    ) -> Tuple[int, int]:
        if time_embedding_type == "fourier":
            time_embed_dim = time_embedding_dim or inner_dim * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(
                    f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
                )
            self.time_embed = GaussianFourierProjection(
                time_embed_dim // 2,
                set_W_to_weight=False,
                log=False,
                flip_sin_to_cos=flip_sin_to_cos,
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = time_embedding_dim or inner_dim * 4

            self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
            timestep_input_dim = inner_dim
        else:
            raise ValueError(
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
            )

        return time_embed_dim, timestep_input_dim

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError(
                    "`fuse_qkv_projections()` is not supported for models having added KV projections."
                )

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedFluxAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(
            name: str,
            module: torch.nn.Module,
            processors: Dict[str, AttentionProcessor],
        ):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(
        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
    ):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(FluxAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(
        self, chunk_size: Optional[int] = None, dim: int = 0
    ) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(
            module: torch.nn.Module, chunk_size: int, dim: int
        ):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
    def disable_forward_chunking(self):
        def fn_recursive_feed_forward(
            module: torch.nn.Module, chunk_size: int, dim: int
        ):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, None, 0)

    def forward(
        self,
        hidden_states: Optional[torch.Tensor],
        timestep: Union[int, float, torch.LongTensor],
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ):
        """
        The [`HunyuanDiT2DModel`] forward method.

        Args:
        hidden_states (`torch.Tensor` of shape `(batch size, dim, latents_size)`):
            The input tensor.
        timestep ( `torch.LongTensor`, *optional*):
            Used to indicate denoising step.
        encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
            Conditional embeddings for cross attention layer.
        encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
            Conditional embeddings for cross attention layer.
        return_dict: bool
            Whether to return a dictionary.
        """

        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if (
                attention_kwargs is not None
                and attention_kwargs.get("scale", None) is not None
            ):
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        _, N, _ = hidden_states.shape

        # import pdb; pdb.set_trace()
        # timesteps_proj = self.time_proj(timestep) # N x 256
        # temb = self.time_embed(timesteps_proj).to(hidden_states.dtype)
        temb = self.time_embed(timestep).to(hidden_states.dtype)  # N x 1280
        temb = self.time_proj(temb)  # N x 1280

        hidden_states = self.proj_in(hidden_states)
        encoder_hidden_states = self.proj_cross_attention(encoder_hidden_states)

        for layer, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                encoder_hidden_states, hidden_states = (
                    torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        temb,
                        None,  # image_rotary_emb
                        attention_kwargs,
                    )
                )
            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=None,
                    joint_attention_kwargs=attention_kwargs,
                )  # (N, L, D)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for layer, block in enumerate(self.single_transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    None,  # image_rotary_emb
                    attention_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    temb=temb,
                    image_rotary_emb=None,
                    joint_attention_kwargs=attention_kwargs,
                )  # (N, L, D)

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        # final layer
        hidden_states = self.norm_out(hidden_states, temb)
        hidden_states = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (hidden_states,)

        return Transformer1DModelOutput(sample=hidden_states)


@step1x3d_geometry.register("flux-denoiser")
class FluxDenoiser(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        pretrained_model_name_or_path: Optional[str] = None
        input_channels: int = 32
        width: int = 768
        layers: int = 12
        num_single_layers: int = 12
        num_heads: int = 16
        condition_dim: int = 1024
        multi_condition_type: str = "in_context"
        use_visual_condition: bool = False
        visual_condition_dim: int = 1024
        n_views: int = 1
        use_caption_condition: bool = False
        caption_condition_dim: int = 1024
        use_label_condition: bool = False
        label_condition_dim: int = 1024

        identity_init: bool = False

    cfg: Config

    def configure(self) -> None:
        assert (
            self.cfg.multi_condition_type == "in_context"
        ), "Flux Denoiser only support in_context learning of multiple conditions"
        self.dit_model = FluxTransformer1DModel(
            num_attention_heads=self.cfg.num_heads,
            width=self.cfg.width,
            in_channels=self.cfg.input_channels,
            num_layers=self.cfg.layers,
            num_single_layers=self.cfg.num_single_layers,
            cross_attention_dim=self.cfg.condition_dim,
        )
        if (
            self.cfg.use_visual_condition
            and self.cfg.visual_condition_dim != self.cfg.condition_dim
        ):
            self.proj_visual_condtion = nn.Sequential(
                nn.RMSNorm(self.cfg.visual_condition_dim),
                nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim),
            )
        if (
            self.cfg.use_caption_condition
            and self.cfg.caption_condition_dim != self.cfg.condition_dim
        ):
            self.proj_caption_condtion = nn.Sequential(
                nn.RMSNorm(self.cfg.caption_condition_dim),
                nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim),
            )
        if (
            self.cfg.use_label_condition
            and self.cfg.label_condition_dim != self.cfg.condition_dim
        ):
            self.proj_label_condtion = nn.Sequential(
                nn.RMSNorm(self.cfg.label_condition_dim),
                nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim),
            )

        if self.cfg.identity_init:
            self.identity_initialize()

        if self.cfg.pretrained_model_name_or_path:
            print(
                f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}"
            )
            ckpt = torch.load(
                self.cfg.pretrained_model_name_or_path,
                map_location="cpu",
                weights_only=True,
            )
            if "state_dict" in ckpt.keys():
                ckpt = ckpt["state_dict"]

            self.load_state_dict(ckpt, strict=True)

    def identity_initialize(self):
        for block in self.dit_model.blocks:
            nn.init.constant_(block.attn.c_proj.weight, 0)
            nn.init.constant_(block.attn.c_proj.bias, 0)
            nn.init.constant_(block.cross_attn.c_proj.weight, 0)
            nn.init.constant_(block.cross_attn.c_proj.bias, 0)
            nn.init.constant_(block.mlp.c_proj.weight, 0)
            nn.init.constant_(block.mlp.c_proj.bias, 0)

    def forward(
        self,
        model_input: torch.FloatTensor,
        timestep: torch.LongTensor,
        visual_condition: Optional[torch.FloatTensor] = None,
        caption_condition: Optional[torch.FloatTensor] = None,
        label_condition: Optional[torch.FloatTensor] = None,
        attention_kwargs: Dict[str, torch.Tensor] = None,
        return_dict: bool = True,
    ):
        r"""
        Args:
            model_input (torch.FloatTensor): [bs, n_data, c]
            timestep (torch.LongTensor): [bs,]
            visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c]
            caption_condition (torch.FloatTensor): [bs, text_context_tokens, c]
            label_condition (torch.FloatTensor): [bs, c]

        Returns:
            sample (torch.FloatTensor): [bs, n_data, c]

        """

        B, n_data, _ = model_input.shape

        # 0. conditions projector
        condition = []
        if self.cfg.use_visual_condition:
            assert visual_condition.shape[-1] == self.cfg.visual_condition_dim
            if self.cfg.visual_condition_dim != self.cfg.condition_dim:
                visual_condition = self.proj_visual_condtion(visual_condition)
            condition.append(visual_condition)
        if self.cfg.use_caption_condition:
            assert caption_condition.shape[-1] == self.cfg.caption_condition_dim
            if self.cfg.caption_condition_dim != self.cfg.condition_dim:
                caption_condition = self.proj_caption_condtion(caption_condition)
            condition.append(caption_condition)
        if self.cfg.use_label_condition:
            assert label_condition.shape[-1] == self.cfg.label_condition_dim
            if self.cfg.label_condition_dim != self.cfg.condition_dim:
                label_condition = self.proj_label_condtion(label_condition)
            condition.append(label_condition)

        # 1. denoise
        output = self.dit_model(
            model_input,
            timestep,
            torch.cat(condition, dim=1),
            attention_kwargs,
            return_dict=return_dict,
        )

        return output