Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTextModel, CLIPImageProcessor | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import tempfile | |
import re | |
import os | |
import traceback | |
from huggingface_hub import list_repo_files | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
import json | |
import random | |
# --- I2V (Image-to-Video) Configuration --- | |
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" # Used for VAE/encoder components | |
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX" | |
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors" | |
# --- I2V LoRA Configuration --- | |
I2V_LORA_REPO_ID = "DeepBeepMeep/Wan2.1" | |
I2V_LORA_SUBFOLDER = "loras_i2v" | |
# --- Load Pipelines --- | |
print("π Loading I2V pipeline from single file...") | |
i2v_pipe = None | |
try: | |
# Load ALL components needed for the pipeline from the base model repo | |
i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) | |
i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
i2v_text_encoder = UMT5EncoderModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16) | |
i2v_tokenizer = AutoTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer") | |
i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor") | |
# Create scheduler with custom flow_shift | |
scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler") | |
scheduler_config['flow_shift'] = 8.0 | |
i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config) | |
# Load the main transformer from the repo and filename | |
i2v_transformer = WanTransformer3DModel.from_single_file( | |
"https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX.safetensors", | |
torch_dtype=torch.bfloat16 | |
) | |
# Manually assemble the pipeline with the custom transformer | |
i2v_pipe = WanImageToVideoPipeline( | |
vae=i2v_vae, | |
text_encoder=i2v_text_encoder, | |
tokenizer=i2v_tokenizer, | |
image_encoder=i2v_image_encoder, | |
image_processor=i2v_image_processor, | |
scheduler=i2v_scheduler, | |
transformer=i2v_transformer | |
) | |
i2v_pipe.to("cuda") | |
print("β I2V pipeline loaded successfully from single file.") | |
except Exception as e: | |
print(f"β Critical Error: Failed to load I2V pipeline from single file.") | |
traceback.print_exc() | |
# --- LoRA Discovery --- | |
def get_available_loras(repo_id, subfolder): | |
""" | |
Fetches the list of available LoRA files from a Hugging Face Hub repo subfolder. | |
This version is compatible with older huggingface_hub libraries that don't support the 'subfolder' argument. | |
""" | |
try: | |
# Fetch all files from the repo to maintain compatibility with older library versions. | |
all_files = list_repo_files(repo_id=repo_id, repo_type='model') | |
# Manually filter for .safetensors files within the specified subfolder. | |
subfolder_path = f"{subfolder}/" | |
safetensors_files = [ | |
f.split('/')[-1] | |
for f in all_files | |
if f.startswith(subfolder_path) and f.endswith('.safetensors') | |
] | |
print(f"β Discovered {len(safetensors_files)} LoRAs in {repo_id}/{subfolder}") | |
return ["None"] + sorted(safetensors_files) | |
except Exception as e: | |
print(f"β οΈ Warning: Could not fetch LoRAs from {repo_id}. LoRA selection will be disabled. Error: {e}") | |
return ["None"] | |
available_i2v_loras = get_available_loras(I2V_LORA_REPO_ID, I2V_LORA_SUBFOLDER) if i2v_pipe else ["None"] | |
# --- Constants and Configuration --- | |
MOD_VALUE = 8 | |
DEFAULT_H_SLIDER_VALUE = 512 | |
DEFAULT_W_SLIDER_VALUE = 768 | |
NEW_FORMULA_MAX_AREA = 768.0 * 512.0 | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 16 | |
T2V_FIXED_FPS = 16 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 81 | |
# --- Default Prompts --- | |
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography" | |
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards" | |
# --- LoRA Preset Helper Functions --- | |
def parse_lset_prompt(lset_prompt): | |
"""Parses a .lset prompt, resolving variables with their defaults.""" | |
# Find all variable declarations like ! {Subject}="woman" | |
variables = dict(re.findall(r'! \{(\w+)\}="([^"]+)"', lset_prompt)) | |
# Remove the declaration lines to get the clean prompt template | |
prompt_template = re.sub(r'! \{\w+\}="[^"]+"\n?', '', lset_prompt).strip() | |
# Replace placeholders with their default values | |
resolved_prompt = prompt_template | |
for key, value in variables.items(): | |
resolved_prompt = resolved_prompt.replace(f"{{{key}}}", value) | |
return resolved_prompt | |
def handle_lora_selection_change(lora_name, current_prompt): | |
""" | |
When a LoRA is selected, this function tries to find a corresponding .lset file, | |
parses it, and appends the generated prompt to the current prompt. | |
""" | |
if not lora_name or lora_name == "None": | |
return gr.update() # No LoRA selected, do not change the prompt. | |
try: | |
# Construct the .lset filename from the .safetensors filename | |
lset_filename = os.path.splitext(lora_name)[0] + ".lset" | |
# Download the .lset file from the same subfolder as the LoRA | |
lset_path = hf_hub_download( | |
repo_id=I2V_LORA_REPO_ID, | |
filename=lset_filename, | |
subfolder=I2V_LORA_SUBFOLDER, | |
repo_type='model' | |
) | |
with open(lset_path, 'r', encoding='utf-8') as f: | |
lset_data = json.load(f) | |
lset_prompt_raw = lset_data.get("prompt") | |
if not lset_prompt_raw: | |
return gr.update() | |
resolved_prompt = parse_lset_prompt(lset_prompt_raw) | |
new_prompt = f"{current_prompt} {resolved_prompt}".strip() | |
gr.Info(f"β Appended prompt from '{lset_filename}'") | |
return gr.update(value=new_prompt) | |
except Exception as e: | |
# This is expected if a .lset file doesn't exist for the selected LoRA. | |
print(f"Info: Could not process .lset for '{lora_name}'. Reason: {e}") | |
gr.Info(f"βΉοΈ No prompt preset found for '{lora_name}'.") | |
return gr.update() | |
# --- Helper Functions --- | |
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str: | |
"""Sanitizes a prompt string to be used as a valid filename.""" | |
if not prompt: | |
prompt = "video" | |
sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip() | |
sanitized = re.sub(r'[\s_-]+', '_', sanitized) | |
return sanitized[:max_len] | |
def update_linked_dimension(driving_value, other_value, aspect_ratio, mod_val, mode): | |
"""Updates a dimension slider based on the other, maintaining aspect ratio.""" | |
# aspect_ratio is stored as W/H | |
if aspect_ratio is None or aspect_ratio == 0: | |
return gr.update() # Do nothing if aspect ratio is not set | |
if mode == 'h_drives_w': | |
# new_w = h * (W/H) | |
new_other_value = driving_value * aspect_ratio | |
else: # 'w_drives_h' | |
# new_h = w / (W/H) | |
new_other_value = driving_value / aspect_ratio | |
# Round to the nearest multiple of mod_val | |
new_other_value = max(mod_val, (round(new_other_value / mod_val)) * mod_val) | |
# Return an update only if the value has changed to prevent infinite loops | |
return gr.update(value=new_other_value) if int(new_other_value) != int(other_value) else gr.update() | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
min_slider_h, max_slider_h, | |
min_slider_w, max_slider_w, | |
default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image): | |
default_aspect = DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect | |
try: | |
# This function calculates initial slider positions based on a max area | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
# We need the original image's true aspect ratio (W/H) for locking the sliders | |
orig_w, orig_h = uploaded_pil_image.size | |
aspect_ratio = orig_w / orig_h if orig_h > 0 else default_aspect | |
return gr.update(value=new_h), gr.update(value=new_w), aspect_ratio | |
except Exception as e: | |
gr.Warning("Error calculating new dimensions. Resetting to default.") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect | |
# --- GPU Duration Estimators for @spaces.GPU --- | |
def get_i2v_duration(steps, duration_seconds): | |
"""Estimates GPU time for Image-to-Video generation.""" | |
if steps > 8 and duration_seconds > 3: return 600 | |
elif steps > 8 or duration_seconds > 3: return 300 | |
else: return 150 | |
def get_t2v_duration(steps, duration_seconds): | |
"""Estimates GPU time for Text-to-Video generation.""" | |
if steps > 15 and duration_seconds > 4: return 700 | |
elif steps > 15 or duration_seconds > 4: return 400 | |
else: return 200 | |
# --- Core Generation Functions --- | |
def generate_i2v_video(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, seed, randomize_seed, | |
lora_name, lora_weight, | |
progress=gr.Progress(track_tqdm=True)): | |
"""Generates a video from an initial image and a prompt.""" | |
if input_image is None: | |
raise gr.Error("Please upload an input image for Image-to-Video generation.") | |
if i2v_pipe is None: | |
raise gr.Error("Image-to-Video pipeline is not available due to a loading error.") | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
# Calculate and adjust num_frames to be compatible with video codecs | |
target_frames = int(round(duration_seconds * FIXED_FPS)) | |
adjusted_frames = 4 * round((target_frames - 1) / 4) + 1 | |
num_frames = int(np.clip(adjusted_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
resized_image = input_image.resize((target_w, target_h)) | |
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting" | |
adapter_name = "i2v_lora" | |
try: | |
# Dynamically load the selected LoRA | |
if lora_name and lora_name != "None": | |
print(f"π Loading LoRA: {lora_name} with weight {lora_weight}") | |
i2v_pipe.load_lora_weights( | |
I2V_LORA_REPO_ID, | |
weight_name=lora_name, | |
adapter_name=adapter_name, | |
subfolder=I2V_LORA_SUBFOLDER | |
) | |
i2v_pipe.set_adapters([adapter_name], adapter_weights=[float(lora_weight)]) | |
with torch.inference_mode(): | |
output_frames_list = i2v_pipe( | |
image=resized_image, | |
prompt=enhanced_prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
finally: | |
# Unload the LoRA to ensure a clean state for the next run | |
if lora_name and lora_name != "None" and hasattr(i2v_pipe, "unload_lora_weights"): | |
print(f"π§Ή Unloading LoRA: {lora_name}") | |
i2v_pipe.unload_lora_weights() | |
# Clear GPU cache to free up memory for the next run | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
sanitized_prompt = sanitize_prompt_for_filename(prompt) | |
filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4" | |
temp_dir = tempfile.mkdtemp() | |
video_path = os.path.join(temp_dir, filename) | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"π₯ Download: {filename}") | |
# --- Gradio UI Layout --- | |
with gr.Blocks() as demo: | |
with gr.Column(elem_classes=["main-container"]): | |
i2v_aspect_ratio = gr.State(value=DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE) | |
gr.Markdown("# β‘ FusionX Enhanced Wan 2.1 Video Suite") | |
with gr.Tabs(elem_classes=["gr-tabs"]): | |
# --- Image-to-Video Tab --- | |
with gr.TabItem("πΌοΈ Image-to-Video", id="i2v_tab"): | |
with gr.Row(): | |
with gr.Column(elem_classes=["input-container"]): | |
i2v_input_image = gr.Image( | |
type="pil", | |
label="πΌοΈ Input Image (auto-resizes H/W sliders)", | |
elem_classes=["image-upload"] | |
) | |
i2v_prompt = gr.Textbox( | |
label="βοΈ Prompt", | |
value=default_prompt_i2v, lines=3 | |
) | |
i2v_duration = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), | |
step=0.1, value=2, label="β±οΈ Duration (seconds)", | |
info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
with gr.Accordion("βοΈ Advanced Settings", open=False): | |
i2v_neg_prompt = gr.Textbox(label="β Negative Prompt", value=default_negative_prompt, lines=4) | |
i2v_seed = gr.Slider(label="π² Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
i2v_rand_seed = gr.Checkbox(label="π Randomize seed", value=True, interactive=True) | |
i2v_lora_name = gr.Dropdown(label="π¨ LoRA Style", choices=available_i2v_loras, value="None", info="Dynamically loaded from Hugging Face.", interactive=len(available_i2v_loras) > 1) | |
i2v_lora_weight = gr.Slider(label="πͺ LoRA Weight", minimum=0.0, maximum=2.0, step=0.1, value=0.8, interactive=True) | |
with gr.Row(): | |
i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"π Height ({MOD_VALUE}px steps)") | |
i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"π Width ({MOD_VALUE}px steps)") | |
gr.Markdown("<p style='color: #ffcc00; font-size: 0.9em;'>β οΈ High resolutions can lead to out-of-memory errors. If generation fails, try a smaller size.</p>") | |
i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="π Inference Steps", info="8-10 recommended for great results.") | |
i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="π― Guidance Scale", visible=False) | |
i2v_generate_btn = gr.Button("π¬ Generate I2V", variant="primary", elem_classes=["generate-btn"]) | |
with gr.Column(elem_classes=["output-container"]): | |
i2v_output_video = gr.Video(label="π₯ Generated Video", autoplay=True, interactive=False) | |
i2v_download = gr.File(label="π₯ Download Video", visible=False) | |
# --- Event Handlers --- | |
# I2V Handlers | |
i2v_lora_name.change( | |
fn=handle_lora_selection_change, | |
inputs=[i2v_lora_name, i2v_prompt], | |
outputs=[i2v_prompt] | |
) | |
i2v_input_image.upload( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[i2v_input_image], | |
outputs=[i2v_height, i2v_width, i2v_aspect_ratio] | |
) | |
i2v_input_image.clear( | |
fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE), | |
inputs=[], | |
outputs=[i2v_height, i2v_width, i2v_aspect_ratio] | |
) | |
i2v_generate_btn.click( | |
fn=generate_i2v_video, | |
inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed, i2v_lora_name, i2v_lora_weight], | |
outputs=[i2v_output_video, i2v_seed, i2v_download] | |
) | |
i2v_height.release( | |
fn=update_linked_dimension, | |
inputs=[i2v_height, i2v_width, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('h_drives_w')], | |
outputs=[i2v_width] | |
) | |
i2v_width.release( | |
fn=update_linked_dimension, | |
inputs=[i2v_width, i2v_height, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('w_drives_h')], | |
outputs=[i2v_height] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |