Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,853 Bytes
5760e26 1f35d50 5760e26 7a0913a 94c0532 5760e26 9530e57 bb449c5 10f11a1 5760e26 32b8238 d58eafe 5760e26 2d7afa1 1f35d50 5760e26 10f11a1 16d02f1 94c0532 1f35d50 7a0913a 94c0532 32b8238 1f35d50 16d02f1 b6b20fb 16d02f1 94c0532 16d02f1 94c0532 16d02f1 32b8238 10f11a1 7037b66 10f11a1 7037b66 10f11a1 2d7afa1 10f11a1 5760e26 10f11a1 5760e26 b6b20fb 1f35d50 5760e26 bb449c5 5760e26 2d7afa1 5760e26 d58eafe 2d7afa1 9530e57 10f11a1 5760e26 2d7afa1 5760e26 2d7afa1 10f11a1 5760e26 10f11a1 5760e26 10f11a1 5760e26 10f11a1 5760e26 2d7afa1 10f11a1 5760e26 2d7afa1 10f11a1 2d7afa1 5760e26 2d7afa1 10f11a1 5760e26 b6b20fb 5760e26 10f11a1 5760e26 9530e57 2d7afa1 9530e57 2d7afa1 9530e57 2d7afa1 afd898a 2d7afa1 10f11a1 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 10f11a1 2d7afa1 10f11a1 2d7afa1 5760e26 2d7afa1 d58eafe 2d7afa1 10f11a1 2d7afa1 10f11a1 2d7afa1 10f11a1 2d7afa1 10f11a1 2d7afa1 10f11a1 2d7afa1 1efcbea 5760e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTextModel, CLIPImageProcessor
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import tempfile
import re
import os
import traceback
from huggingface_hub import list_repo_files
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import gradio as gr
import json
import random
# --- I2V (Image-to-Video) Configuration ---
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" # Used for VAE/encoder components
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors"
# --- I2V LoRA Configuration ---
I2V_LORA_REPO_ID = "DeepBeepMeep/Wan2.1"
I2V_LORA_SUBFOLDER = "loras_i2v"
# --- Load Pipelines ---
print("π Loading I2V pipeline from single file...")
i2v_pipe = None
try:
# Load ALL components needed for the pipeline from the base model repo
i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
i2v_text_encoder = UMT5EncoderModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16)
i2v_tokenizer = AutoTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer")
i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor")
# Create scheduler with custom flow_shift
scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler")
scheduler_config['flow_shift'] = 8.0
i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
# Load the main transformer from the repo and filename
i2v_transformer = WanTransformer3DModel.from_single_file(
"https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX.safetensors",
torch_dtype=torch.bfloat16
)
# Manually assemble the pipeline with the custom transformer
i2v_pipe = WanImageToVideoPipeline(
vae=i2v_vae,
text_encoder=i2v_text_encoder,
tokenizer=i2v_tokenizer,
image_encoder=i2v_image_encoder,
image_processor=i2v_image_processor,
scheduler=i2v_scheduler,
transformer=i2v_transformer
)
i2v_pipe.to("cuda")
print("β
I2V pipeline loaded successfully from single file.")
except Exception as e:
print(f"β Critical Error: Failed to load I2V pipeline from single file.")
traceback.print_exc()
# --- LoRA Discovery ---
def get_available_loras(repo_id, subfolder):
"""
Fetches the list of available LoRA files from a Hugging Face Hub repo subfolder.
This version is compatible with older huggingface_hub libraries that don't support the 'subfolder' argument.
"""
try:
# Fetch all files from the repo to maintain compatibility with older library versions.
all_files = list_repo_files(repo_id=repo_id, repo_type='model')
# Manually filter for .safetensors files within the specified subfolder.
subfolder_path = f"{subfolder}/"
safetensors_files = [
f.split('/')[-1]
for f in all_files
if f.startswith(subfolder_path) and f.endswith('.safetensors')
]
print(f"β
Discovered {len(safetensors_files)} LoRAs in {repo_id}/{subfolder}")
return ["None"] + sorted(safetensors_files)
except Exception as e:
print(f"β οΈ Warning: Could not fetch LoRAs from {repo_id}. LoRA selection will be disabled. Error: {e}")
return ["None"]
available_i2v_loras = get_available_loras(I2V_LORA_REPO_ID, I2V_LORA_SUBFOLDER) if i2v_pipe else ["None"]
# --- Constants and Configuration ---
MOD_VALUE = 8
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 768
NEW_FORMULA_MAX_AREA = 768.0 * 512.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
T2V_FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
# --- Default Prompts ---
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"
# --- LoRA Preset Helper Functions ---
def parse_lset_prompt(lset_prompt):
"""Parses a .lset prompt, resolving variables with their defaults."""
# Find all variable declarations like ! {Subject}="woman"
variables = dict(re.findall(r'! \{(\w+)\}="([^"]+)"', lset_prompt))
# Remove the declaration lines to get the clean prompt template
prompt_template = re.sub(r'! \{\w+\}="[^"]+"\n?', '', lset_prompt).strip()
# Replace placeholders with their default values
resolved_prompt = prompt_template
for key, value in variables.items():
resolved_prompt = resolved_prompt.replace(f"{{{key}}}", value)
return resolved_prompt
def handle_lora_selection_change(lora_name, current_prompt):
"""
When a LoRA is selected, this function tries to find a corresponding .lset file,
parses it, and appends the generated prompt to the current prompt.
"""
if not lora_name or lora_name == "None":
return gr.update() # No LoRA selected, do not change the prompt.
try:
# Construct the .lset filename from the .safetensors filename
lset_filename = os.path.splitext(lora_name)[0] + ".lset"
# Download the .lset file from the same subfolder as the LoRA
lset_path = hf_hub_download(
repo_id=I2V_LORA_REPO_ID,
filename=lset_filename,
subfolder=I2V_LORA_SUBFOLDER,
repo_type='model'
)
with open(lset_path, 'r', encoding='utf-8') as f:
lset_data = json.load(f)
lset_prompt_raw = lset_data.get("prompt")
if not lset_prompt_raw:
return gr.update()
resolved_prompt = parse_lset_prompt(lset_prompt_raw)
new_prompt = f"{current_prompt} {resolved_prompt}".strip()
gr.Info(f"β
Appended prompt from '{lset_filename}'")
return gr.update(value=new_prompt)
except Exception as e:
# This is expected if a .lset file doesn't exist for the selected LoRA.
print(f"Info: Could not process .lset for '{lora_name}'. Reason: {e}")
gr.Info(f"βΉοΈ No prompt preset found for '{lora_name}'.")
return gr.update()
# --- Helper Functions ---
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
"""Sanitizes a prompt string to be used as a valid filename."""
if not prompt:
prompt = "video"
sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
sanitized = re.sub(r'[\s_-]+', '_', sanitized)
return sanitized[:max_len]
def update_linked_dimension(driving_value, other_value, aspect_ratio, mod_val, mode):
"""Updates a dimension slider based on the other, maintaining aspect ratio."""
# aspect_ratio is stored as W/H
if aspect_ratio is None or aspect_ratio == 0:
return gr.update() # Do nothing if aspect ratio is not set
if mode == 'h_drives_w':
# new_w = h * (W/H)
new_other_value = driving_value * aspect_ratio
else: # 'w_drives_h'
# new_h = w / (W/H)
new_other_value = driving_value / aspect_ratio
# Round to the nearest multiple of mod_val
new_other_value = max(mod_val, (round(new_other_value / mod_val)) * mod_val)
# Return an update only if the value has changed to prevent infinite loops
return gr.update(value=new_other_value) if int(new_other_value) != int(other_value) else gr.update()
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image):
default_aspect = DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect
try:
# This function calculates initial slider positions based on a max area
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
# We need the original image's true aspect ratio (W/H) for locking the sliders
orig_w, orig_h = uploaded_pil_image.size
aspect_ratio = orig_w / orig_h if orig_h > 0 else default_aspect
return gr.update(value=new_h), gr.update(value=new_w), aspect_ratio
except Exception as e:
gr.Warning("Error calculating new dimensions. Resetting to default.")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect
# --- GPU Duration Estimators for @spaces.GPU ---
def get_i2v_duration(steps, duration_seconds):
"""Estimates GPU time for Image-to-Video generation."""
if steps > 8 and duration_seconds > 3: return 600
elif steps > 8 or duration_seconds > 3: return 300
else: return 150
def get_t2v_duration(steps, duration_seconds):
"""Estimates GPU time for Text-to-Video generation."""
if steps > 15 and duration_seconds > 4: return 700
elif steps > 15 or duration_seconds > 4: return 400
else: return 200
# --- Core Generation Functions ---
@spaces.GPU(duration_from_args=get_i2v_duration)
def generate_i2v_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps, seed, randomize_seed,
lora_name, lora_weight,
progress=gr.Progress(track_tqdm=True)):
"""Generates a video from an initial image and a prompt."""
if input_image is None:
raise gr.Error("Please upload an input image for Image-to-Video generation.")
if i2v_pipe is None:
raise gr.Error("Image-to-Video pipeline is not available due to a loading error.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
# Calculate and adjust num_frames to be compatible with video codecs
target_frames = int(round(duration_seconds * FIXED_FPS))
adjusted_frames = 4 * round((target_frames - 1) / 4) + 1
num_frames = int(np.clip(adjusted_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"
adapter_name = "i2v_lora"
try:
# Dynamically load the selected LoRA
if lora_name and lora_name != "None":
print(f"π Loading LoRA: {lora_name} with weight {lora_weight}")
i2v_pipe.load_lora_weights(
I2V_LORA_REPO_ID,
weight_name=lora_name,
adapter_name=adapter_name,
subfolder=I2V_LORA_SUBFOLDER
)
i2v_pipe.set_adapters([adapter_name], adapter_weights=[float(lora_weight)])
with torch.inference_mode():
output_frames_list = i2v_pipe(
image=resized_image,
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
finally:
# Unload the LoRA to ensure a clean state for the next run
if lora_name and lora_name != "None" and hasattr(i2v_pipe, "unload_lora_weights"):
print(f"π§Ή Unloading LoRA: {lora_name}")
i2v_pipe.unload_lora_weights()
# Clear GPU cache to free up memory for the next run
if torch.cuda.is_available():
torch.cuda.empty_cache()
sanitized_prompt = sanitize_prompt_for_filename(prompt)
filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4"
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, filename)
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"π₯ Download: {filename}")
# --- Gradio UI Layout ---
with gr.Blocks() as demo:
with gr.Column(elem_classes=["main-container"]):
i2v_aspect_ratio = gr.State(value=DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE)
gr.Markdown("# β‘ FusionX Enhanced Wan 2.1 Video Suite")
with gr.Tabs(elem_classes=["gr-tabs"]):
# --- Image-to-Video Tab ---
with gr.TabItem("πΌοΈ Image-to-Video", id="i2v_tab"):
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
i2v_input_image = gr.Image(
type="pil",
label="πΌοΈ Input Image (auto-resizes H/W sliders)",
elem_classes=["image-upload"]
)
i2v_prompt = gr.Textbox(
label="βοΈ Prompt",
value=default_prompt_i2v, lines=3
)
i2v_duration = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1, value=2, label="β±οΈ Duration (seconds)",
info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
i2v_neg_prompt = gr.Textbox(label="β Negative Prompt", value=default_negative_prompt, lines=4)
i2v_seed = gr.Slider(label="π² Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
i2v_rand_seed = gr.Checkbox(label="π Randomize seed", value=True, interactive=True)
i2v_lora_name = gr.Dropdown(label="π¨ LoRA Style", choices=available_i2v_loras, value="None", info="Dynamically loaded from Hugging Face.", interactive=len(available_i2v_loras) > 1)
i2v_lora_weight = gr.Slider(label="πͺ LoRA Weight", minimum=0.0, maximum=2.0, step=0.1, value=0.8, interactive=True)
with gr.Row():
i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"π Height ({MOD_VALUE}px steps)")
i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"π Width ({MOD_VALUE}px steps)")
gr.Markdown("<p style='color: #ffcc00; font-size: 0.9em;'>β οΈ High resolutions can lead to out-of-memory errors. If generation fails, try a smaller size.</p>")
i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="π Inference Steps", info="8-10 recommended for great results.")
i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="π― Guidance Scale", visible=False)
i2v_generate_btn = gr.Button("π¬ Generate I2V", variant="primary", elem_classes=["generate-btn"])
with gr.Column(elem_classes=["output-container"]):
i2v_output_video = gr.Video(label="π₯ Generated Video", autoplay=True, interactive=False)
i2v_download = gr.File(label="π₯ Download Video", visible=False)
# --- Event Handlers ---
# I2V Handlers
i2v_lora_name.change(
fn=handle_lora_selection_change,
inputs=[i2v_lora_name, i2v_prompt],
outputs=[i2v_prompt]
)
i2v_input_image.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[i2v_input_image],
outputs=[i2v_height, i2v_width, i2v_aspect_ratio]
)
i2v_input_image.clear(
fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE),
inputs=[],
outputs=[i2v_height, i2v_width, i2v_aspect_ratio]
)
i2v_generate_btn.click(
fn=generate_i2v_video,
inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed, i2v_lora_name, i2v_lora_weight],
outputs=[i2v_output_video, i2v_seed, i2v_download]
)
i2v_height.release(
fn=update_linked_dimension,
inputs=[i2v_height, i2v_width, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('h_drives_w')],
outputs=[i2v_width]
)
i2v_width.release(
fn=update_linked_dimension,
inputs=[i2v_width, i2v_height, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('w_drives_h')],
outputs=[i2v_height]
)
if __name__ == "__main__":
demo.queue().launch() |