File size: 18,853 Bytes
5760e26
 
1f35d50
5760e26
7a0913a
94c0532
5760e26
9530e57
 
bb449c5
10f11a1
5760e26
 
 
32b8238
d58eafe
5760e26
 
2d7afa1
1f35d50
 
 
5760e26
10f11a1
 
 
 
16d02f1
 
 
 
94c0532
1f35d50
 
7a0913a
 
94c0532
 
 
 
 
 
32b8238
1f35d50
16d02f1
b6b20fb
16d02f1
 
 
 
 
 
94c0532
 
16d02f1
94c0532
 
16d02f1
 
 
 
 
 
 
32b8238
10f11a1
 
7037b66
 
 
 
10f11a1
7037b66
 
 
 
 
 
 
 
 
 
10f11a1
 
 
 
 
 
 
 
2d7afa1
 
10f11a1
 
 
 
5760e26
10f11a1
 
5760e26
 
b6b20fb
1f35d50
5760e26
bb449c5
5760e26
2d7afa1
5760e26
 
 
d58eafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7afa1
9530e57
 
 
 
 
 
 
 
10f11a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5760e26
2d7afa1
 
 
5760e26
 
 
 
 
 
 
 
 
 
 
 
2d7afa1
10f11a1
5760e26
10f11a1
5760e26
10f11a1
5760e26
 
 
 
 
10f11a1
 
 
 
 
 
5760e26
2d7afa1
10f11a1
5760e26
2d7afa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f11a1
 
2d7afa1
 
5760e26
2d7afa1
10f11a1
 
5760e26
 
 
b6b20fb
 
 
 
 
5760e26
 
 
 
10f11a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5760e26
9530e57
2d7afa1
9530e57
 
2d7afa1
9530e57
2d7afa1
 
 
afd898a
2d7afa1
10f11a1
2d7afa1
5760e26
2d7afa1
 
 
 
 
 
 
 
 
5760e26
2d7afa1
 
 
5760e26
2d7afa1
 
 
 
 
 
 
 
 
 
10f11a1
 
2d7afa1
 
 
10f11a1
2d7afa1
 
 
 
5760e26
2d7afa1
 
 
 
 
 
 
 
d58eafe
 
 
 
 
2d7afa1
 
 
10f11a1
2d7afa1
 
10f11a1
2d7afa1
10f11a1
2d7afa1
 
 
10f11a1
2d7afa1
 
10f11a1
 
 
 
 
 
 
 
 
 
2d7afa1
1efcbea
5760e26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTextModel, CLIPImageProcessor
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import tempfile
import re
import os
import traceback
from huggingface_hub import list_repo_files
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import gradio as gr
import json
import random

# --- I2V (Image-to-Video) Configuration ---
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" # Used for VAE/encoder components
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors"

# --- I2V LoRA Configuration ---
I2V_LORA_REPO_ID = "DeepBeepMeep/Wan2.1"
I2V_LORA_SUBFOLDER = "loras_i2v"

# --- Load Pipelines ---
print("πŸš€ Loading I2V pipeline from single file...")
i2v_pipe = None
try:
    # Load ALL components needed for the pipeline from the base model repo
    i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
    i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
    i2v_text_encoder = UMT5EncoderModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16)
    i2v_tokenizer = AutoTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer")
    i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor")
    
    # Create scheduler with custom flow_shift
    scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler")
    scheduler_config['flow_shift'] = 8.0
    i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
    
    # Load the main transformer from the repo and filename
    i2v_transformer = WanTransformer3DModel.from_single_file(
        "https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX.safetensors",
        torch_dtype=torch.bfloat16
    )

    # Manually assemble the pipeline with the custom transformer
    i2v_pipe = WanImageToVideoPipeline(
        vae=i2v_vae,
        text_encoder=i2v_text_encoder,
        tokenizer=i2v_tokenizer,
        image_encoder=i2v_image_encoder,
        image_processor=i2v_image_processor,
        scheduler=i2v_scheduler,
        transformer=i2v_transformer
    )
    i2v_pipe.to("cuda")
    print("βœ… I2V pipeline loaded successfully from single file.")
except Exception as e:
    print(f"❌ Critical Error: Failed to load I2V pipeline from single file.")
    traceback.print_exc()

# --- LoRA Discovery ---
def get_available_loras(repo_id, subfolder):
    """
    Fetches the list of available LoRA files from a Hugging Face Hub repo subfolder.
    This version is compatible with older huggingface_hub libraries that don't support the 'subfolder' argument.
    """
    try:
        # Fetch all files from the repo to maintain compatibility with older library versions.
        all_files = list_repo_files(repo_id=repo_id, repo_type='model')

        # Manually filter for .safetensors files within the specified subfolder.
        subfolder_path = f"{subfolder}/"
        safetensors_files = [
            f.split('/')[-1]
            for f in all_files
            if f.startswith(subfolder_path) and f.endswith('.safetensors')
        ]
        print(f"βœ… Discovered {len(safetensors_files)} LoRAs in {repo_id}/{subfolder}")
        return ["None"] + sorted(safetensors_files)
    except Exception as e:
        print(f"⚠️ Warning: Could not fetch LoRAs from {repo_id}. LoRA selection will be disabled. Error: {e}")
        return ["None"]

available_i2v_loras = get_available_loras(I2V_LORA_REPO_ID, I2V_LORA_SUBFOLDER) if i2v_pipe else ["None"]


# --- Constants and Configuration ---
MOD_VALUE = 8
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 768
NEW_FORMULA_MAX_AREA = 768.0 * 512.0

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
T2V_FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

# --- Default Prompts ---
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"

# --- LoRA Preset Helper Functions ---
def parse_lset_prompt(lset_prompt):
    """Parses a .lset prompt, resolving variables with their defaults."""
    # Find all variable declarations like ! {Subject}="woman"
    variables = dict(re.findall(r'! \{(\w+)\}="([^"]+)"', lset_prompt))
    
    # Remove the declaration lines to get the clean prompt template
    prompt_template = re.sub(r'! \{\w+\}="[^"]+"\n?', '', lset_prompt).strip()
    
    # Replace placeholders with their default values
    resolved_prompt = prompt_template
    for key, value in variables.items():
        resolved_prompt = resolved_prompt.replace(f"{{{key}}}", value)
        
    return resolved_prompt

def handle_lora_selection_change(lora_name, current_prompt):
    """
    When a LoRA is selected, this function tries to find a corresponding .lset file,
    parses it, and appends the generated prompt to the current prompt.
    """
    if not lora_name or lora_name == "None":
        return gr.update() # No LoRA selected, do not change the prompt.

    try:
        # Construct the .lset filename from the .safetensors filename
        lset_filename = os.path.splitext(lora_name)[0] + ".lset"
        
        # Download the .lset file from the same subfolder as the LoRA
        lset_path = hf_hub_download(
            repo_id=I2V_LORA_REPO_ID,
            filename=lset_filename,
            subfolder=I2V_LORA_SUBFOLDER,
            repo_type='model'
        )
        
        with open(lset_path, 'r', encoding='utf-8') as f:
            lset_data = json.load(f)
        
        lset_prompt_raw = lset_data.get("prompt")
        if not lset_prompt_raw:
            return gr.update()

        resolved_prompt = parse_lset_prompt(lset_prompt_raw)
        new_prompt = f"{current_prompt} {resolved_prompt}".strip()
        gr.Info(f"βœ… Appended prompt from '{lset_filename}'")
        return gr.update(value=new_prompt)
    except Exception as e:
        # This is expected if a .lset file doesn't exist for the selected LoRA.
        print(f"Info: Could not process .lset for '{lora_name}'. Reason: {e}")
        gr.Info(f"ℹ️ No prompt preset found for '{lora_name}'.")
        return gr.update()

# --- Helper Functions ---
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
    """Sanitizes a prompt string to be used as a valid filename."""
    if not prompt:
        prompt = "video"
    sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
    sanitized = re.sub(r'[\s_-]+', '_', sanitized)
    return sanitized[:max_len]

def update_linked_dimension(driving_value, other_value, aspect_ratio, mod_val, mode):
    """Updates a dimension slider based on the other, maintaining aspect ratio."""
    # aspect_ratio is stored as W/H
    if aspect_ratio is None or aspect_ratio == 0:
        return gr.update() # Do nothing if aspect ratio is not set

    if mode == 'h_drives_w':
        # new_w = h * (W/H)
        new_other_value = driving_value * aspect_ratio
    else: # 'w_drives_h'
        # new_h = w / (W/H)
        new_other_value = driving_value / aspect_ratio

    # Round to the nearest multiple of mod_val
    new_other_value = max(mod_val, (round(new_other_value / mod_val)) * mod_val)

    # Return an update only if the value has changed to prevent infinite loops
    return gr.update(value=new_other_value) if int(new_other_value) != int(other_value) else gr.update()

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                  min_slider_h, max_slider_h,
                                  min_slider_w, max_slider_w,
                                  default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w
    aspect_ratio = orig_h / orig_w
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image):
    default_aspect = DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect
    try:
        # This function calculates initial slider positions based on a max area
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )

        # We need the original image's true aspect ratio (W/H) for locking the sliders
        orig_w, orig_h = uploaded_pil_image.size
        aspect_ratio = orig_w / orig_h if orig_h > 0 else default_aspect

        return gr.update(value=new_h), gr.update(value=new_w), aspect_ratio
    except Exception as e:
        gr.Warning("Error calculating new dimensions. Resetting to default.")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect

# --- GPU Duration Estimators for @spaces.GPU ---
def get_i2v_duration(steps, duration_seconds):
    """Estimates GPU time for Image-to-Video generation."""
    if steps > 8 and duration_seconds > 3: return 600
    elif steps > 8 or duration_seconds > 3: return 300
    else: return 150

def get_t2v_duration(steps, duration_seconds):
    """Estimates GPU time for Text-to-Video generation."""
    if steps > 15 and duration_seconds > 4: return 700
    elif steps > 15 or duration_seconds > 4: return 400
    else: return 200

# --- Core Generation Functions ---

@spaces.GPU(duration_from_args=get_i2v_duration)
def generate_i2v_video(input_image, prompt, height, width,
                      negative_prompt, duration_seconds,
                      guidance_scale, steps, seed, randomize_seed,
                      lora_name, lora_weight,
                      progress=gr.Progress(track_tqdm=True)):
    """Generates a video from an initial image and a prompt."""
    if input_image is None:
        raise gr.Error("Please upload an input image for Image-to-Video generation.")
    if i2v_pipe is None:
        raise gr.Error("Image-to-Video pipeline is not available due to a loading error.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    # Calculate and adjust num_frames to be compatible with video codecs
    target_frames = int(round(duration_seconds * FIXED_FPS))
    adjusted_frames = 4 * round((target_frames - 1) / 4) + 1
    num_frames = int(np.clip(adjusted_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = input_image.resize((target_w, target_h))
    enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"

    adapter_name = "i2v_lora"
    try:
        # Dynamically load the selected LoRA
        if lora_name and lora_name != "None":
            print(f"πŸš€ Loading LoRA: {lora_name} with weight {lora_weight}")
            i2v_pipe.load_lora_weights(
                I2V_LORA_REPO_ID,
                weight_name=lora_name,
                adapter_name=adapter_name,
                subfolder=I2V_LORA_SUBFOLDER
            )
            i2v_pipe.set_adapters([adapter_name], adapter_weights=[float(lora_weight)])

        with torch.inference_mode():
            output_frames_list = i2v_pipe(
                image=resized_image,
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt,
                height=target_h,
                width=target_w,
                num_frames=num_frames,
                guidance_scale=float(guidance_scale),
                num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]
    finally:
        # Unload the LoRA to ensure a clean state for the next run
        if lora_name and lora_name != "None" and hasattr(i2v_pipe, "unload_lora_weights"):
            print(f"🧹 Unloading LoRA: {lora_name}")
            i2v_pipe.unload_lora_weights()
        # Clear GPU cache to free up memory for the next run
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    sanitized_prompt = sanitize_prompt_for_filename(prompt)
    filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4"
    temp_dir = tempfile.mkdtemp()
    video_path = os.path.join(temp_dir, filename)
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    
    return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"πŸ“₯ Download: {filename}")

# --- Gradio UI Layout ---
with gr.Blocks() as demo:
    with gr.Column(elem_classes=["main-container"]):
        i2v_aspect_ratio = gr.State(value=DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE)
        gr.Markdown("# ⚑ FusionX Enhanced Wan 2.1 Video Suite")
        
        with gr.Tabs(elem_classes=["gr-tabs"]):
            # --- Image-to-Video Tab ---
            with gr.TabItem("πŸ–ΌοΈ Image-to-Video", id="i2v_tab"):
                with gr.Row():
                    with gr.Column(elem_classes=["input-container"]):
                        i2v_input_image = gr.Image(
                            type="pil",
                            label="πŸ–ΌοΈ Input Image (auto-resizes H/W sliders)",
                            elem_classes=["image-upload"]
                        )
                        i2v_prompt = gr.Textbox(
                            label="✏️ Prompt",
                            value=default_prompt_i2v, lines=3
                        )
                        i2v_duration = gr.Slider(
                            minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
                            maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
                            step=0.1, value=2, label="⏱️ Duration (seconds)",
                            info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                        )
                        with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                            i2v_neg_prompt = gr.Textbox(label="❌ Negative Prompt", value=default_negative_prompt, lines=4)
                            i2v_seed = gr.Slider(label="🎲 Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                            i2v_rand_seed = gr.Checkbox(label="πŸ”€ Randomize seed", value=True, interactive=True)
                            i2v_lora_name = gr.Dropdown(label="🎨 LoRA Style", choices=available_i2v_loras, value="None", info="Dynamically loaded from Hugging Face.", interactive=len(available_i2v_loras) > 1)
                            i2v_lora_weight = gr.Slider(label="πŸ’ͺ LoRA Weight", minimum=0.0, maximum=2.0, step=0.1, value=0.8, interactive=True)
                            with gr.Row():
                                i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"πŸ“ Height ({MOD_VALUE}px steps)")
                                i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"πŸ“ Width ({MOD_VALUE}px steps)")
                            gr.Markdown("<p style='color: #ffcc00; font-size: 0.9em;'>⚠️ High resolutions can lead to out-of-memory errors. If generation fails, try a smaller size.</p>")
                            i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="πŸš€ Inference Steps", info="8-10 recommended for great results.")
                            i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="🎯 Guidance Scale", visible=False)
                        
                        i2v_generate_btn = gr.Button("🎬 Generate I2V", variant="primary", elem_classes=["generate-btn"])

                    with gr.Column(elem_classes=["output-container"]):
                        i2v_output_video = gr.Video(label="πŸŽ₯ Generated Video", autoplay=True, interactive=False)
                        i2v_download = gr.File(label="πŸ“₯ Download Video", visible=False)



    # --- Event Handlers ---
    # I2V Handlers
    i2v_lora_name.change(
        fn=handle_lora_selection_change,
        inputs=[i2v_lora_name, i2v_prompt],
        outputs=[i2v_prompt]
    )
    i2v_input_image.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[i2v_input_image],
        outputs=[i2v_height, i2v_width, i2v_aspect_ratio]
    )
    i2v_input_image.clear(
        fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE),
        inputs=[],
        outputs=[i2v_height, i2v_width, i2v_aspect_ratio]
    )
    i2v_generate_btn.click(
        fn=generate_i2v_video,
        inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed, i2v_lora_name, i2v_lora_weight],
        outputs=[i2v_output_video, i2v_seed, i2v_download]
    )
    i2v_height.release(
        fn=update_linked_dimension,
        inputs=[i2v_height, i2v_width, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('h_drives_w')],
        outputs=[i2v_width]
    )
    i2v_width.release(
        fn=update_linked_dimension,
        inputs=[i2v_width, i2v_height, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('w_drives_h')],
        outputs=[i2v_height]
    )



if __name__ == "__main__":
    demo.queue().launch()