thankfulcarp commited on
Commit
2d7afa1
Β·
1 Parent(s): bb449c5

Major Tab re-write of app.py

Browse files
Files changed (1) hide show
  1. app.py +237 -215
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import spaces
2
  import torch
3
- from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
4
  from diffusers.utils import export_to_video
5
  from transformers import CLIPVisionModel
6
  import gradio as gr
@@ -14,43 +14,62 @@ import numpy as np
14
  from PIL import Image
15
  import random
16
 
17
- # Base MODEL_ID (using original Wan model that's compatible with diffusers)
18
- MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
 
19
 
20
- # Merged FusionX enhancement LoRA
 
 
 
 
21
  LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
22
- LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
23
-
24
- # Load enhanced model components
25
- print("πŸš€ Loading FusionX Enhanced Wan2.1 I2V Model...")
26
- image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
27
- vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
28
- pipe = WanImageToVideoPipeline.from_pretrained(
29
- MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
30
  )
 
 
31
 
32
- # FusionX optimized scheduler settings
33
- pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
34
- pipe.to("cuda")
 
 
 
 
 
 
 
35
 
36
- # Load and fuse the single merged FusionX LoRA
 
 
37
  try:
38
- lora_path = hf_hub_download(
39
- repo_id=LORA_REPO_ID,
40
- filename=LORA_FILENAME
41
- )
42
- print("βœ… LoRA downloaded to:", lora_path)
43
-
44
- # Load, set weight, and fuse the LoRA into the pipeline
45
- pipe.load_lora_weights(lora_path, adapter_name="fusionx_lora")
46
- pipe.set_adapters(["fusionx_lora"], adapter_weights=[0.75])
47
- pipe.fuse_lora()
48
- print("βœ… FusionX LoRA loaded and fused with a weight of 0.75.")
49
 
 
 
 
 
 
 
 
 
 
 
50
  except Exception as e:
51
- print("❌ Error during LoRA loading:")
52
  traceback.print_exc()
53
 
 
 
54
  MOD_VALUE = 32
55
  DEFAULT_H_SLIDER_VALUE = 640
56
  DEFAULT_W_SLIDER_VALUE = 1024
@@ -64,11 +83,12 @@ FIXED_FPS = 24
64
  MIN_FRAMES_MODEL = 8
65
  MAX_FRAMES_MODEL = 81
66
 
67
- # Enhanced prompts for FusionX-style output
68
  default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
 
69
  default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"
70
 
71
- # Enhanced CSS for FusionX theme
72
  custom_css = """
73
  /* Enhanced FusionX theme with cinematic styling */
74
  .gradio-container {
@@ -237,75 +257,56 @@ video {
237
  box-shadow: 0 8px 30px rgba(0, 0, 0, 0.4) !important;
238
  border: 2px solid rgba(106, 76, 147, 0.3) !important;
239
  }
240
- /* Enhanced examples section */
241
- .gr-examples {
242
- background: rgba(255, 255, 255, 0.04) !important;
243
- border-radius: 20px !important;
244
- padding: 25px !important;
245
- margin-top: 25px !important;
246
  border: 1px solid rgba(255, 255, 255, 0.1) !important;
247
  }
248
- /* Enhanced checkbox */
249
- input[type="checkbox"] {
250
- accent-color: #6a4c93 !important;
251
- transform: scale(1.2) !important;
252
- }
253
- /* Responsive enhancements */
254
- @media (max-width: 768px) {
255
- h1 { font-size: 2.2rem !important; }
256
- .main-container { padding: 25px !important; }
257
- .generate-btn { padding: 12px 30px !important; font-size: 1.1rem !important; }
258
  }
259
- /* Badge container styling */
260
- .badge-container {
261
- display: flex;
262
- justify-content: center;
263
- gap: 15px;
264
- margin: 20px 0;
265
- flex-wrap: wrap;
266
- }
267
- .badge-container img {
268
- border-radius: 8px;
269
- transition: transform 0.3s ease;
270
  }
271
- .badge-container img:hover {
272
- transform: scale(1.05);
 
 
273
  }
274
  """
275
 
 
276
  def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
277
  """Sanitizes a prompt string to be used as a valid filename."""
278
  if not prompt:
279
  prompt = "video"
280
- # Remove non-alphanumeric characters (except spaces, hyphens, underscores)
281
  sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
282
- # Replace spaces and multiple hyphens/underscores with a single underscore
283
  sanitized = re.sub(r'[\s_-]+', '_', sanitized)
284
- # Truncate to max_len
285
  return sanitized[:max_len]
286
 
287
  def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
288
- min_slider_h, max_slider_h,
289
- min_slider_w, max_slider_w,
290
- default_h, default_w):
291
  orig_w, orig_h = pil_image.size
292
  if orig_w <= 0 or orig_h <= 0:
293
  return default_h, default_w
294
-
295
  aspect_ratio = orig_h / orig_w
296
-
297
  calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
298
  calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
299
-
300
  calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
301
  calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
302
-
303
  new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
304
  new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
305
-
306
  return new_h, new_w
307
 
308
- def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
309
  if uploaded_pil_image is None:
310
  return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
311
  try:
@@ -316,180 +317,201 @@ def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_
316
  )
317
  return gr.update(value=new_h), gr.update(value=new_w)
318
  except Exception as e:
319
- gr.Warning("Error attempting to calculate new dimensions")
320
  return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
321
 
322
- def get_duration(input_image, prompt, height, width,
323
- negative_prompt, duration_seconds,
324
- guidance_scale, steps,
325
- seed, randomize_seed,
326
- progress):
327
- # FusionX optimized duration calculation
328
- if steps > 8 and duration_seconds > 3:
329
- return 600
330
- elif steps > 8 or duration_seconds > 3:
331
- return 300
332
- else:
333
- return 150
334
-
335
- @spaces.GPU(duration=get_duration)
336
- def generate_video(input_image, prompt, height, width,
337
- negative_prompt=default_negative_prompt, duration_seconds=3,
338
- guidance_scale=1, steps=8,
339
- seed=42, randomize_seed=False,
340
- progress=gr.Progress(track_tqdm=True)):
341
-
 
 
342
  if input_image is None:
343
- raise gr.Error("Please upload an input image.")
344
 
345
  target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
346
  target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
347
-
348
  num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
349
-
350
  current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
351
-
352
  resized_image = input_image.resize((target_w, target_h))
353
-
354
- # Enhanced prompt for FusionX-style output
355
  enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"
356
 
357
  with torch.inference_mode():
358
- output_frames_list = pipe(
359
- image=resized_image,
360
- prompt=enhanced_prompt,
361
  negative_prompt=negative_prompt,
362
- height=target_h,
363
- width=target_w,
364
  num_frames=num_frames,
365
- guidance_scale=float(guidance_scale),
366
  num_inference_steps=int(steps),
367
  generator=torch.Generator(device="cuda").manual_seed(current_seed)
368
  ).frames[0]
369
 
370
- # Create a unique filename for download
371
  sanitized_prompt = sanitize_prompt_for_filename(prompt)
372
- filename = f"{sanitized_prompt}_{current_seed}.mp4"
373
-
374
  temp_dir = tempfile.mkdtemp()
375
  video_path = os.path.join(temp_dir, filename)
 
376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
 
378
  return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"πŸ“₯ Download: {filename}")
379
 
380
- with gr.Blocks() as demo:
381
- with gr.Column(elem_classes=["main-container"]):
382
- gr.Markdown("# ⚑ FusionX Enhanced Wan 2.1 I2V (14B)")
383
 
384
-
385
-
386
-
 
387
 
388
- with gr.Row():
389
- with gr.Column(elem_classes=["input-container"]):
390
- input_image_component = gr.Image(
391
- type="pil",
392
- label="πŸ–ΌοΈ Input Image (auto-resized to target H/W)",
393
- elem_classes=["image-upload"]
394
- )
395
- prompt_input = gr.Textbox(
396
- label="✏️ Enhanced Prompt (FusionX-style enhancements applied)",
397
- value=default_prompt_i2v,
398
- lines=3
399
- )
400
- duration_seconds_input = gr.Slider(
401
- minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
402
- maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
403
- step=0.1,
404
- value=2,
405
- label="⏱️ Duration (seconds)",
406
- info=f"FusionX Enhanced supports {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Recommended: 2-5 seconds"
407
- )
408
-
409
- with gr.Accordion("βš™οΈ Advanced FusionX Settings", open=False):
410
- negative_prompt_input = gr.Textbox(
411
- label="❌ Negative Prompt (FusionX Enhanced)",
412
- value=default_negative_prompt,
413
- lines=4
414
- )
415
- seed_input = gr.Slider(
416
- label="🎲 Seed",
417
- minimum=0,
418
- maximum=MAX_SEED,
419
- step=1,
420
- value=42,
421
- interactive=True
422
- )
423
- randomize_seed_checkbox = gr.Checkbox(
424
- label="πŸ”€ Randomize seed",
425
- value=True,
426
- interactive=True
427
- )
428
- with gr.Row():
429
- height_input = gr.Slider(
430
- minimum=SLIDER_MIN_H,
431
- maximum=SLIDER_MAX_H,
432
- step=MOD_VALUE,
433
- value=DEFAULT_H_SLIDER_VALUE,
434
- label=f"πŸ“ Output Height (FusionX optimized: {MOD_VALUE} multiples)"
435
  )
436
- width_input = gr.Slider(
437
- minimum=SLIDER_MIN_W,
438
- maximum=SLIDER_MAX_W,
439
- step=MOD_VALUE,
440
- value=DEFAULT_W_SLIDER_VALUE,
441
- label=f"πŸ“ Output Width (FusionX optimized: {MOD_VALUE} multiples)"
442
  )
443
- steps_slider = gr.Slider(
444
- minimum=1,
445
- maximum=20,
446
- step=1,
447
- value=8, # FusionX optimized
448
- label="πŸš€ Inference Steps (FusionX Enhanced: 8-10 recommended)",
449
- info="FusionX Enhanced delivers excellent results in just 8-10 steps!"
450
- )
451
- guidance_scale_input = gr.Slider(
452
- minimum=0.0,
453
- maximum=20.0,
454
- step=0.5,
455
- value=1.0,
456
- label="🎯 Guidance Scale (FusionX optimized)",
457
- visible=False
458
- )
459
-
460
- generate_button = gr.Button(
461
- "🎬 Generate FusionX Enhanced Video",
462
- variant="primary",
463
- elem_classes=["generate-btn"]
464
- )
465
-
466
- with gr.Column(elem_classes=["output-container"]):
467
- video_output = gr.Video(
468
- label="πŸŽ₯ FusionX Enhanced Generated Video",
469
- autoplay=True,
470
- interactive=False
471
- )
472
- download_output = gr.File(label="πŸ“₯ Download Video", visible=False)
473
-
474
- input_image_component.upload(
475
- fn=handle_image_upload_for_dims_wan,
476
- inputs=[input_image_component, height_input, width_input],
477
- outputs=[height_input, width_input]
478
- )
479
-
480
- input_image_component.clear(
481
- fn=handle_image_upload_for_dims_wan,
482
- inputs=[input_image_component, height_input, width_input],
483
- outputs=[height_input, width_input]
484
- )
485
-
486
- ui_inputs = [
487
- input_image_component, prompt_input, height_input, width_input,
488
- negative_prompt_input, duration_seconds_input,
489
- guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
490
- ]
491
- generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input, download_output])
492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
 
494
  if __name__ == "__main__":
495
  demo.queue().launch()
 
1
  import spaces
2
  import torch
3
+ from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, WanTextToVideoPipeline, UniPCMultistepScheduler
4
  from diffusers.utils import export_to_video
5
  from transformers import CLIPVisionModel
6
  import gradio as gr
 
14
  from PIL import Image
15
  import random
16
 
17
+ # --- I2V (Image-to-Video) Configuration ---
18
+ I2V_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
19
+ I2V_LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
20
 
21
+ # --- T2V (Text-to-Video) Configuration ---
22
+ T2V_MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
23
+ T2V_LORA_FILENAME = "FusionX_LoRa/Wan2.1_T2V_14B_FusionX_LoRA.safetensors"
24
+
25
+ # --- Common LoRA Configuration ---
26
  LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
27
+
28
+ # --- Load I2V Pipeline ---
29
+ print("πŸš€ Loading FusionX Enhanced Wan2.1 I2V Pipeline...")
30
+ i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
31
+ i2v_vae = AutoencoderKLWan.from_pretrained(I2V_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
32
+ i2v_pipe = WanImageToVideoPipeline.from_pretrained(
33
+ I2V_MODEL_ID, vae=i2v_vae, image_encoder=i2v_image_encoder, torch_dtype=torch.bfloat16
 
34
  )
35
+ i2v_pipe.scheduler = UniPCMultistepScheduler.from_config(i2v_pipe.scheduler.config, flow_shift=8.0)
36
+ i2v_pipe.to("cuda")
37
 
38
+ try:
39
+ i2v_lora_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=I2V_LORA_FILENAME)
40
+ print("βœ… I2V LoRA downloaded to:", i2v_lora_path)
41
+ i2v_pipe.load_lora_weights(i2v_lora_path, adapter_name="fusionx_lora")
42
+ i2v_pipe.set_adapters(["fusionx_lora"], adapter_weights=[0.75])
43
+ i2v_pipe.fuse_lora()
44
+ print("βœ… I2V FusionX LoRA loaded and fused with a weight of 0.75.")
45
+ except Exception as e:
46
+ print("❌ Error during I2V LoRA loading:")
47
+ traceback.print_exc()
48
 
49
+ # --- Load T2V Pipeline ---
50
+ print("\nπŸš€ Loading FusionX Enhanced Wan2.1 T2V Pipeline...")
51
+ t2v_pipe = None
52
  try:
53
+ t2v_pipe = WanTextToVideoPipeline.from_pretrained(T2V_MODEL_ID, torch_dtype=torch.bfloat16)
54
+ t2v_pipe.scheduler = UniPCMultistepScheduler.from_config(t2v_pipe.scheduler.config, flow_shift=8.0)
55
+ t2v_pipe.to("cuda")
 
 
 
 
 
 
 
 
56
 
57
+ try:
58
+ t2v_lora_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=T2V_LORA_FILENAME)
59
+ print("βœ… T2V LoRA downloaded to:", t2v_lora_path)
60
+ t2v_pipe.load_lora_weights(t2v_lora_path, adapter_name="fusionx_lora")
61
+ t2v_pipe.set_adapters(["fusionx_lora"], adapter_weights=[0.75])
62
+ t2v_pipe.fuse_lora()
63
+ print("βœ… T2V FusionX LoRA loaded and fused with a weight of 0.75.")
64
+ except Exception as e:
65
+ print("❌ Error during T2V LoRA loading:")
66
+ traceback.print_exc()
67
  except Exception as e:
68
+ print("❌ Critical Error: T2V Pipeline failed to load. The Text-to-Video tab will be disabled.")
69
  traceback.print_exc()
70
 
71
+
72
+ # --- Constants and Configuration ---
73
  MOD_VALUE = 32
74
  DEFAULT_H_SLIDER_VALUE = 640
75
  DEFAULT_W_SLIDER_VALUE = 1024
 
83
  MIN_FRAMES_MODEL = 8
84
  MAX_FRAMES_MODEL = 81
85
 
86
+ # --- Default Prompts ---
87
  default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
88
+ default_prompt_t2v = "A breathtaking landscape with a flowing river, cinematic, 8k, photorealistic"
89
  default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"
90
 
91
+ # --- Enhanced CSS for FusionX theme ---
92
  custom_css = """
93
  /* Enhanced FusionX theme with cinematic styling */
94
  .gradio-container {
 
257
  box-shadow: 0 8px 30px rgba(0, 0, 0, 0.4) !important;
258
  border: 2px solid rgba(106, 76, 147, 0.3) !important;
259
  }
260
+ /* Tab styling */
261
+ .gr-tabs {
262
+ border-radius: 15px !important;
263
+ overflow: hidden;
 
 
264
  border: 1px solid rgba(255, 255, 255, 0.1) !important;
265
  }
266
+ .gr-tabs .tabs {
267
+ background-color: rgba(255, 255, 255, 0.05) !important;
268
+ border-bottom: 1px solid rgba(255, 255, 255, 0.1) !important;
 
 
 
 
 
 
 
269
  }
270
+ .gr-tabs .tab-item {
271
+ background: transparent !important;
272
+ color: #a9a9d8 !important;
273
+ border-radius: 10px 10px 0 0 !important;
274
+ transition: all 0.3s ease !important;
275
+ padding: 12px 20px !important;
 
 
 
 
 
276
  }
277
+ .gr-tabs .tab-item.selected {
278
+ background: rgba(255, 255, 255, 0.1) !important;
279
+ color: #ffffff !important;
280
+ border-bottom: 2px solid #6a4c93 !important;
281
  }
282
  """
283
 
284
+ # --- Helper Functions ---
285
  def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
286
  """Sanitizes a prompt string to be used as a valid filename."""
287
  if not prompt:
288
  prompt = "video"
 
289
  sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
 
290
  sanitized = re.sub(r'[\s_-]+', '_', sanitized)
 
291
  return sanitized[:max_len]
292
 
293
  def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
294
+ min_slider_h, max_slider_h,
295
+ min_slider_w, max_slider_w,
296
+ default_h, default_w):
297
  orig_w, orig_h = pil_image.size
298
  if orig_w <= 0 or orig_h <= 0:
299
  return default_h, default_w
 
300
  aspect_ratio = orig_h / orig_w
 
301
  calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
302
  calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
 
303
  calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
304
  calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
 
305
  new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
306
  new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
 
307
  return new_h, new_w
308
 
309
+ def handle_image_upload_for_dims_wan(uploaded_pil_image):
310
  if uploaded_pil_image is None:
311
  return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
312
  try:
 
317
  )
318
  return gr.update(value=new_h), gr.update(value=new_w)
319
  except Exception as e:
320
+ gr.Warning("Error calculating new dimensions. Resetting to default.")
321
  return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
322
 
323
+ # --- GPU Duration Estimators for @spaces.GPU ---
324
+ def get_i2v_duration(steps, duration_seconds):
325
+ """Estimates GPU time for Image-to-Video generation."""
326
+ if steps > 8 and duration_seconds > 3: return 600
327
+ elif steps > 8 or duration_seconds > 3: return 300
328
+ else: return 150
329
+
330
+ def get_t2v_duration(steps, duration_seconds):
331
+ """Estimates GPU time for Text-to-Video generation."""
332
+ if steps > 15 and duration_seconds > 4: return 700
333
+ elif steps > 15 or duration_seconds > 4: return 400
334
+ else: return 200
335
+
336
+ # --- Core Generation Functions ---
337
+
338
+ @spaces.GPU(duration_from_args=get_i2v_duration)
339
+ def generate_i2v_video(input_image, prompt, height, width,
340
+ negative_prompt, duration_seconds,
341
+ guidance_scale, steps,
342
+ seed, randomize_seed,
343
+ progress=gr.Progress(track_tqdm=True)):
344
+ """Generates a video from an initial image and a prompt."""
345
  if input_image is None:
346
+ raise gr.Error("Please upload an input image for Image-to-Video generation.")
347
 
348
  target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
349
  target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
 
350
  num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
 
351
  current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
 
352
  resized_image = input_image.resize((target_w, target_h))
 
 
353
  enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"
354
 
355
  with torch.inference_mode():
356
+ output_frames_list = i2v_pipe(
357
+ image=resized_image,
358
+ prompt=enhanced_prompt,
359
  negative_prompt=negative_prompt,
360
+ height=target_h,
361
+ width=target_w,
362
  num_frames=num_frames,
363
+ guidance_scale=float(guidance_scale),
364
  num_inference_steps=int(steps),
365
  generator=torch.Generator(device="cuda").manual_seed(current_seed)
366
  ).frames[0]
367
 
 
368
  sanitized_prompt = sanitize_prompt_for_filename(prompt)
369
+ filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4"
 
370
  temp_dir = tempfile.mkdtemp()
371
  video_path = os.path.join(temp_dir, filename)
372
+ export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
373
 
374
+ return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"πŸ“₯ Download: {filename}")
375
+
376
+
377
+ @spaces.GPU(duration_from_args=get_t2v_duration)
378
+ def generate_t2v_video(prompt, height, width,
379
+ negative_prompt, duration_seconds,
380
+ guidance_scale, steps,
381
+ seed, randomize_seed,
382
+ progress=gr.Progress(track_tqdm=True)):
383
+ """Generates a video from a text prompt."""
384
+ if t2v_pipe is None:
385
+ raise gr.Error("Text-to-Video pipeline is not available due to a loading error.")
386
+ if not prompt:
387
+ raise gr.Error("Please enter a prompt for Text-to-Video generation.")
388
+
389
+ target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
390
+ target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
391
+ num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
392
+ current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
393
+ enhanced_prompt = f"{prompt}, cinematic, high detail, photorealistic, professional lighting"
394
+
395
+ with torch.inference_mode():
396
+ output_frames_list = t2v_pipe(
397
+ prompt=enhanced_prompt,
398
+ negative_prompt=negative_prompt,
399
+ height=target_h,
400
+ width=target_w,
401
+ num_frames=num_frames,
402
+ guidance_scale=float(guidance_scale),
403
+ num_inference_steps=int(steps),
404
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
405
+ ).frames[0]
406
+
407
+ sanitized_prompt = sanitize_prompt_for_filename(prompt)
408
+ filename = f"t2v_{sanitized_prompt}_{current_seed}.mp4"
409
+ temp_dir = tempfile.mkdtemp()
410
+ video_path = os.path.join(temp_dir, filename)
411
  export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
412
+
413
  return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"πŸ“₯ Download: {filename}")
414
 
 
 
 
415
 
416
+ # --- Gradio UI Layout ---
417
+ with gr.Blocks(css=custom_css) as demo:
418
+ with gr.Column(elem_classes=["main-container"]):
419
+ gr.Markdown("# ⚑ FusionX Enhanced Wan 2.1 Video Suite")
420
 
421
+ with gr.Tabs(elem_classes=["gr-tabs"]):
422
+ # --- Image-to-Video Tab ---
423
+ with gr.TabItem("πŸ–ΌοΈ Image-to-Video", id="i2v_tab"):
424
+ with gr.Row():
425
+ with gr.Column(elem_classes=["input-container"]):
426
+ i2v_input_image = gr.Image(
427
+ type="pil",
428
+ label="πŸ–ΌοΈ Input Image (auto-resizes H/W sliders)",
429
+ elem_classes=["image-upload"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430
  )
431
+ i2v_prompt = gr.Textbox(
432
+ label="✏️ Prompt",
433
+ value=default_prompt_i2v, lines=3
 
 
 
434
  )
435
+ i2v_duration = gr.Slider(
436
+ minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
437
+ maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
438
+ step=0.1, value=2, label="⏱️ Duration (seconds)",
439
+ info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
440
+ )
441
+ with gr.Accordion("βš™οΈ Advanced Settings", open=False):
442
+ i2v_neg_prompt = gr.Textbox(label="❌ Negative Prompt", value=default_negative_prompt, lines=4)
443
+ i2v_seed = gr.Slider(label="🎲 Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
444
+ i2v_rand_seed = gr.Checkbox(label="πŸ”€ Randomize seed", value=True, interactive=True)
445
+ with gr.Row():
446
+ i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"πŸ“ Height ({MOD_VALUE}px steps)")
447
+ i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"πŸ“ Width ({MOD_VALUE}px steps)")
448
+ i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="πŸš€ Inference Steps", info="8-10 recommended for great results.")
449
+ i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="🎯 Guidance Scale", visible=False)
450
+
451
+ i2v_generate_btn = gr.Button("🎬 Generate I2V", variant="primary", elem_classes=["generate-btn"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452
 
453
+ with gr.Column(elem_classes=["output-container"]):
454
+ i2v_output_video = gr.Video(label="πŸŽ₯ Generated Video", autoplay=True, interactive=False)
455
+ i2v_download = gr.File(label="πŸ“₯ Download Video", visible=False)
456
+
457
+ # --- Text-to-Video Tab ---
458
+ with gr.TabItem("✍️ Text-to-Video", id="t2v_tab", interactive=t2v_pipe is not None):
459
+ if t2v_pipe is None:
460
+ gr.Markdown("<h3 style='color: #ff9999; text-align: center;'>⚠️ Text-to-Video Pipeline Failed to Load. This tab is disabled.</h3>")
461
+ else:
462
+ with gr.Row():
463
+ with gr.Column(elem_classes=["input-container"]):
464
+ t2v_prompt = gr.Textbox(
465
+ label="✏️ Prompt",
466
+ value=default_prompt_t2v, lines=4
467
+ )
468
+ t2v_duration = gr.Slider(
469
+ minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
470
+ maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
471
+ step=0.1, value=2, label="⏱️ Duration (seconds)",
472
+ info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
473
+ )
474
+ with gr.Accordion("βš™οΈ Advanced Settings", open=False):
475
+ t2v_neg_prompt = gr.Textbox(label="❌ Negative Prompt", value=default_negative_prompt, lines=4)
476
+ t2v_seed = gr.Slider(label="🎲 Seed", minimum=0, maximum=MAX_SEED, step=1, value=1234, interactive=True)
477
+ t2v_rand_seed = gr.Checkbox(label="πŸ”€ Randomize seed", value=True, interactive=True)
478
+ with gr.Row():
479
+ t2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"πŸ“ Height ({MOD_VALUE}px steps)")
480
+ t2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"πŸ“ Width ({MOD_VALUE}px steps)")
481
+ t2v_steps = gr.Slider(minimum=1, maximum=25, step=1, value=15, label="πŸš€ Inference Steps", info="15-20 recommended for quality.")
482
+ t2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=7.5, label="🎯 Guidance Scale")
483
+
484
+ t2v_generate_btn = gr.Button("🎬 Generate T2V", variant="primary", elem_classes=["generate-btn"])
485
+
486
+ with gr.Column(elem_classes=["output-container"]):
487
+ t2v_output_video = gr.Video(label="πŸŽ₯ Generated Video", autoplay=True, interactive=False)
488
+ t2v_download = gr.File(label="πŸ“₯ Download Video", visible=False)
489
+
490
+ # --- Event Handlers ---
491
+ # I2V Handlers
492
+ i2v_input_image.upload(
493
+ fn=handle_image_upload_for_dims_wan,
494
+ inputs=[i2v_input_image],
495
+ outputs=[i2v_height, i2v_width]
496
+ )
497
+ i2v_input_image.clear(
498
+ fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE),
499
+ inputs=[],
500
+ outputs=[i2v_height, i2v_width]
501
+ )
502
+ i2v_generate_btn.click(
503
+ fn=generate_i2v_video,
504
+ inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed],
505
+ outputs=[i2v_output_video, i2v_seed, i2v_download]
506
+ )
507
+
508
+ # T2V Handlers
509
+ if t2v_pipe is not None:
510
+ t2v_generate_btn.click(
511
+ fn=generate_t2v_video,
512
+ inputs=[t2v_prompt, t2v_height, t2v_width, t2v_neg_prompt, t2v_duration, t2v_guidance, t2v_steps, t2v_seed, t2v_rand_seed],
513
+ outputs=[t2v_output_video, t2v_seed, t2v_download]
514
+ )
515
 
516
  if __name__ == "__main__":
517
  demo.queue().launch()