Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,715 Bytes
5760e26 1f35d50 5760e26 7a0913a 94c0532 5760e26 9530e57 bb449c5 5760e26 32b8238 5760e26 2d7afa1 1f35d50 5760e26 2d7afa1 1f35d50 2d7afa1 16d02f1 94c0532 1f35d50 7a0913a 94c0532 32b8238 1f35d50 16d02f1 afd898a 16d02f1 94c0532 16d02f1 94c0532 16d02f1 32b8238 2d7afa1 5760e26 bb449c5 5760e26 bb449c5 5760e26 1f35d50 5760e26 bb449c5 5760e26 2d7afa1 5760e26 2d7afa1 9530e57 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 bb449c5 5760e26 9530e57 2d7afa1 9530e57 2d7afa1 9530e57 2d7afa1 afd898a 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 5760e26 2d7afa1 1efcbea 5760e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTextModel, CLIPImageProcessor
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import tempfile
import re
import os
import traceback
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import gradio as gr
import random
# --- I2V (Image-to-Video) Configuration ---
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" # Used for VAE/encoder components
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors"
# --- T2V (Text-to-Video) Configuration ---
T2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
T2V_LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
T2V_LORA_FILENAME = "FusionX_LoRa/Wan2.1_T2V_14B_FusionX_LoRA.safetensors"
# --- Load Pipelines ---
print("π Loading I2V pipeline from single file...")
i2v_pipe = None
try:
# Load ALL components needed for the pipeline from the base model repo
i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
i2v_text_encoder = UMT5EncoderModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16)
i2v_tokenizer = AutoTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer")
i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor")
# Create scheduler with custom flow_shift
scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler")
scheduler_config['flow_shift'] = 8.0
i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
# Load the main transformer from the repo and filename
i2v_transformer = WanTransformer3DModel.from_single_file(
"https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX_fp16.safetensors",
torch_dtype=torch.bfloat16
)
# Manually assemble the pipeline with the custom transformer
i2v_pipe = WanImageToVideoPipeline(
vae=i2v_vae,
text_encoder=i2v_text_encoder,
tokenizer=i2v_tokenizer,
image_encoder=i2v_image_encoder,
image_processor=i2v_image_processor,
scheduler=i2v_scheduler,
transformer=i2v_transformer
)
i2v_pipe.to("cuda")
print("β
I2V pipeline loaded successfully from single file.")
except Exception as e:
print(f"β Critical Error: Failed to load I2V pipeline from single file.")
traceback.print_exc()
# --- Constants and Configuration ---
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 640
DEFAULT_W_SLIDER_VALUE = 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
T2V_FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
# --- Default Prompts ---
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"
# --- Helper Functions ---
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
"""Sanitizes a prompt string to be used as a valid filename."""
if not prompt:
prompt = "video"
sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
sanitized = re.sub(r'[\s_-]+', '_', sanitized)
return sanitized[:max_len]
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error calculating new dimensions. Resetting to default.")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
# --- GPU Duration Estimators for @spaces.GPU ---
def get_i2v_duration(steps, duration_seconds):
"""Estimates GPU time for Image-to-Video generation."""
if steps > 8 and duration_seconds > 3: return 600
elif steps > 8 or duration_seconds > 3: return 300
else: return 150
def get_t2v_duration(steps, duration_seconds):
"""Estimates GPU time for Text-to-Video generation."""
if steps > 15 and duration_seconds > 4: return 700
elif steps > 15 or duration_seconds > 4: return 400
else: return 200
# --- Core Generation Functions ---
@spaces.GPU(duration_from_args=get_i2v_duration)
def generate_i2v_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)):
"""Generates a video from an initial image and a prompt."""
if input_image is None:
raise gr.Error("Please upload an input image for Image-to-Video generation.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"
with torch.inference_mode():
output_frames_list = i2v_pipe(
image=resized_image,
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
sanitized_prompt = sanitize_prompt_for_filename(prompt)
filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4"
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, filename)
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"π₯ Download: {filename}")
# --- Gradio UI Layout ---
with gr.Blocks() as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# β‘ FusionX Enhanced Wan 2.1 Video Suite")
with gr.Tabs(elem_classes=["gr-tabs"]):
# --- Image-to-Video Tab ---
with gr.TabItem("πΌοΈ Image-to-Video", id="i2v_tab"):
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
i2v_input_image = gr.Image(
type="pil",
label="πΌοΈ Input Image (auto-resizes H/W sliders)",
elem_classes=["image-upload"]
)
i2v_prompt = gr.Textbox(
label="βοΈ Prompt",
value=default_prompt_i2v, lines=3
)
i2v_duration = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1, value=2, label="β±οΈ Duration (seconds)",
info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
i2v_neg_prompt = gr.Textbox(label="β Negative Prompt", value=default_negative_prompt, lines=4)
i2v_seed = gr.Slider(label="π² Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
i2v_rand_seed = gr.Checkbox(label="π Randomize seed", value=True, interactive=True)
with gr.Row():
i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"π Height ({MOD_VALUE}px steps)")
i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"π Width ({MOD_VALUE}px steps)")
i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="π Inference Steps", info="8-10 recommended for great results.")
i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="π― Guidance Scale", visible=False)
i2v_generate_btn = gr.Button("π¬ Generate I2V", variant="primary", elem_classes=["generate-btn"])
with gr.Column(elem_classes=["output-container"]):
i2v_output_video = gr.Video(label="π₯ Generated Video", autoplay=True, interactive=False)
i2v_download = gr.File(label="π₯ Download Video", visible=False)
# --- Event Handlers ---
# I2V Handlers
i2v_input_image.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[i2v_input_image],
outputs=[i2v_height, i2v_width]
)
i2v_input_image.clear(
fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE),
inputs=[],
outputs=[i2v_height, i2v_width]
)
i2v_generate_btn.click(
fn=generate_i2v_video,
inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed],
outputs=[i2v_output_video, i2v_seed, i2v_download]
)
if __name__ == "__main__":
demo.queue().launch() |