File size: 11,715 Bytes
5760e26
 
1f35d50
5760e26
7a0913a
94c0532
5760e26
9530e57
 
bb449c5
5760e26
 
 
 
32b8238
5760e26
 
2d7afa1
1f35d50
 
 
5760e26
2d7afa1
1f35d50
 
 
2d7afa1
16d02f1
 
 
 
94c0532
1f35d50
 
7a0913a
 
94c0532
 
 
 
 
 
32b8238
1f35d50
16d02f1
afd898a
16d02f1
 
 
 
 
 
94c0532
 
16d02f1
94c0532
 
16d02f1
 
 
 
 
 
 
32b8238
2d7afa1
 
5760e26
bb449c5
 
 
5760e26
bb449c5
 
5760e26
 
 
1f35d50
5760e26
bb449c5
5760e26
2d7afa1
5760e26
 
 
2d7afa1
9530e57
 
 
 
 
 
 
 
5760e26
2d7afa1
 
 
5760e26
 
 
 
 
 
 
 
 
 
 
 
2d7afa1
5760e26
 
 
 
 
 
 
 
 
 
2d7afa1
5760e26
 
2d7afa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5760e26
2d7afa1
5760e26
 
 
 
 
 
 
 
 
2d7afa1
 
 
5760e26
2d7afa1
 
5760e26
2d7afa1
5760e26
bb449c5
5760e26
 
9530e57
2d7afa1
9530e57
 
2d7afa1
9530e57
2d7afa1
 
 
afd898a
2d7afa1
 
5760e26
2d7afa1
 
 
 
 
 
 
 
 
5760e26
2d7afa1
 
 
5760e26
2d7afa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5760e26
2d7afa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1efcbea
5760e26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTextModel, CLIPImageProcessor
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import tempfile
import re
import os
import traceback

from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import gradio as gr
import random

# --- I2V (Image-to-Video) Configuration ---
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" # Used for VAE/encoder components
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors"

# --- T2V (Text-to-Video) Configuration ---
T2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
T2V_LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
T2V_LORA_FILENAME = "FusionX_LoRa/Wan2.1_T2V_14B_FusionX_LoRA.safetensors"

# --- Load Pipelines ---
print("πŸš€ Loading I2V pipeline from single file...")
i2v_pipe = None
try:
    # Load ALL components needed for the pipeline from the base model repo
    i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
    i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
    i2v_text_encoder = UMT5EncoderModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16)
    i2v_tokenizer = AutoTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer")
    i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor")
    
    # Create scheduler with custom flow_shift
    scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler")
    scheduler_config['flow_shift'] = 8.0
    i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
    
    # Load the main transformer from the repo and filename
    i2v_transformer = WanTransformer3DModel.from_single_file(
        "https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX_fp16.safetensors",
        torch_dtype=torch.bfloat16
    )

    # Manually assemble the pipeline with the custom transformer
    i2v_pipe = WanImageToVideoPipeline(
        vae=i2v_vae,
        text_encoder=i2v_text_encoder,
        tokenizer=i2v_tokenizer,
        image_encoder=i2v_image_encoder,
        image_processor=i2v_image_processor,
        scheduler=i2v_scheduler,
        transformer=i2v_transformer
    )
    i2v_pipe.to("cuda")
    print("βœ… I2V pipeline loaded successfully from single file.")
except Exception as e:
    print(f"❌ Critical Error: Failed to load I2V pipeline from single file.")
    traceback.print_exc()


# --- Constants and Configuration ---
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 640
DEFAULT_W_SLIDER_VALUE = 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0

SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
T2V_FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

# --- Default Prompts ---
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"

# --- Helper Functions ---
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
    """Sanitizes a prompt string to be used as a valid filename."""
    if not prompt:
        prompt = "video"
    sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
    sanitized = re.sub(r'[\s_-]+', '_', sanitized)
    return sanitized[:max_len]

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                  min_slider_h, max_slider_h,
                                  min_slider_w, max_slider_w,
                                  default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w
    aspect_ratio = orig_h / orig_w
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error calculating new dimensions. Resetting to default.")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

# --- GPU Duration Estimators for @spaces.GPU ---
def get_i2v_duration(steps, duration_seconds):
    """Estimates GPU time for Image-to-Video generation."""
    if steps > 8 and duration_seconds > 3: return 600
    elif steps > 8 or duration_seconds > 3: return 300
    else: return 150

def get_t2v_duration(steps, duration_seconds):
    """Estimates GPU time for Text-to-Video generation."""
    if steps > 15 and duration_seconds > 4: return 700
    elif steps > 15 or duration_seconds > 4: return 400
    else: return 200

# --- Core Generation Functions ---

@spaces.GPU(duration_from_args=get_i2v_duration)
def generate_i2v_video(input_image, prompt, height, width,
                      negative_prompt, duration_seconds,
                      guidance_scale, steps,
                      seed, randomize_seed,
                      progress=gr.Progress(track_tqdm=True)):
    """Generates a video from an initial image and a prompt."""
    if input_image is None:
        raise gr.Error("Please upload an input image for Image-to-Video generation.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = input_image.resize((target_w, target_h))
    enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"

    with torch.inference_mode():
        output_frames_list = i2v_pipe(
            image=resized_image,
            prompt=enhanced_prompt,
            negative_prompt=negative_prompt,
            height=target_h,
            width=target_w,
            num_frames=num_frames,
            guidance_scale=float(guidance_scale),
            num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    sanitized_prompt = sanitize_prompt_for_filename(prompt)
    filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4"
    temp_dir = tempfile.mkdtemp()
    video_path = os.path.join(temp_dir, filename)
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    
    return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"πŸ“₯ Download: {filename}")

# --- Gradio UI Layout ---
with gr.Blocks() as demo:
    with gr.Column(elem_classes=["main-container"]):
        gr.Markdown("# ⚑ FusionX Enhanced Wan 2.1 Video Suite")
        
        with gr.Tabs(elem_classes=["gr-tabs"]):
            # --- Image-to-Video Tab ---
            with gr.TabItem("πŸ–ΌοΈ Image-to-Video", id="i2v_tab"):
                with gr.Row():
                    with gr.Column(elem_classes=["input-container"]):
                        i2v_input_image = gr.Image(
                            type="pil",
                            label="πŸ–ΌοΈ Input Image (auto-resizes H/W sliders)",
                            elem_classes=["image-upload"]
                        )
                        i2v_prompt = gr.Textbox(
                            label="✏️ Prompt",
                            value=default_prompt_i2v, lines=3
                        )
                        i2v_duration = gr.Slider(
                            minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
                            maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
                            step=0.1, value=2, label="⏱️ Duration (seconds)",
                            info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                        )
                        with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                            i2v_neg_prompt = gr.Textbox(label="❌ Negative Prompt", value=default_negative_prompt, lines=4)
                            i2v_seed = gr.Slider(label="🎲 Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                            i2v_rand_seed = gr.Checkbox(label="πŸ”€ Randomize seed", value=True, interactive=True)
                            with gr.Row():
                                i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"πŸ“ Height ({MOD_VALUE}px steps)")
                                i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"πŸ“ Width ({MOD_VALUE}px steps)")
                            i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="πŸš€ Inference Steps", info="8-10 recommended for great results.")
                            i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="🎯 Guidance Scale", visible=False)
                        
                        i2v_generate_btn = gr.Button("🎬 Generate I2V", variant="primary", elem_classes=["generate-btn"])

                    with gr.Column(elem_classes=["output-container"]):
                        i2v_output_video = gr.Video(label="πŸŽ₯ Generated Video", autoplay=True, interactive=False)
                        i2v_download = gr.File(label="πŸ“₯ Download Video", visible=False)



    # --- Event Handlers ---
    # I2V Handlers
    i2v_input_image.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[i2v_input_image],
        outputs=[i2v_height, i2v_width]
    )
    i2v_input_image.clear(
        fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE),
        inputs=[],
        outputs=[i2v_height, i2v_width]
    )
    i2v_generate_btn.click(
        fn=generate_i2v_video,
        inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed],
        outputs=[i2v_output_video, i2v_seed, i2v_download]
    )



if __name__ == "__main__":
    demo.queue().launch()