facefusion3 / app.py
aiqcamp's picture
Update app.py
1c71c6c verified
raw
history blame
5.06 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ๊ธฐ๋ณธ ๋ชจ๋ธ ๋ฐ LoRA ์„ค์ •
base_model = "black-forest-labs/FLUX.1-dev"
model_lora_repo = "Motas/Flux_Fashion_Photography_Style" # ํŒจ์…˜ ๋ชจ๋ธ LoRA
clothes_lora_repo = "prithivMLmods/Canopus-Clothing-Flux-LoRA" # ์˜๋ฅ˜ LoRA
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
pipe.to("cuda")
MAX_SEED = 2**32-1
# ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ ์ •์˜
model_examples = [
"professional fashion model wearing elegant black dress in studio lighting",
"fashion model in casual street wear, urban background",
"high fashion model in avant-garde outfit on runway"
]
clothes_examples = [
"luxurious red evening gown with detailed embroidery",
"casual denim jacket with vintage wash",
"modern minimalist white blazer with clean lines"
]
@spaces.GPU()
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
def contains_korean(text):
return any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text)
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
# ๋ชจ๋“œ์— ๋”ฐ๋ฅธ LoRA ๋ฐ ํŠธ๋ฆฌ๊ฑฐ์›Œ๋“œ ์„ค์ •
if mode == "ํŒจ์…˜ ๋ชจ๋ธ ์ƒ์„ฑ":
pipe.load_lora_weights(model_lora_repo)
trigger_word = "fashion photography, professional model"
else:
pipe.load_lora_weights(clothes_lora_repo)
trigger_word = "upper clothing, fashion item"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting fashion generation...")
for i in range(1, steps + 1):
if i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
progress(100, "Completed!")
return image, seed
def update_examples(mode):
if mode == "ํŒจ์…˜ ๋ชจ๋ธ ์ƒ์„ฑ":
return gr.Examples(examples=model_examples)
else:
return gr.Examples(examples=clothes_examples)
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as app:
gr.Markdown("# ๐ŸŽญ Fashion AI Studio")
gr.Markdown("AI๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํŒจ์…˜ ๋ชจ๋ธ๊ณผ ์˜๋ฅ˜๋ฅผ ์ƒ์„ฑํ•ด๋ณด์„ธ์š”")
with gr.Column():
# ๋ชจ๋“œ ์„ ํƒ
mode = gr.Radio(
choices=["ํŒจ์…˜ ๋ชจ๋ธ ์ƒ์„ฑ", "ํŒจ์…˜ ์˜๋ฅ˜ ์ƒ์„ฑ"],
label="์ƒ์„ฑ ๋ชจ๋“œ",
value="ํŒจ์…˜ ๋ชจ๋ธ ์ƒ์„ฑ"
)
# ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ
prompt = gr.TextArea(
label="โœ๏ธ ํŒจ์…˜ ์„ค๋ช… (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)",
placeholder="ํŒจ์…˜ ๋ชจ๋ธ์ด๋‚˜ ์˜๋ฅ˜๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”...",
lines=3
)
# ์˜ˆ์‹œ ์„น์…˜
with gr.Column() as example_container:
examples = gr.Examples(
examples=model_examples,
inputs=prompt,
label="์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ"
)
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€
result = gr.Image(label="์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€")
generate_button = gr.Button("๐Ÿš€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ")
# ๊ณ ๊ธ‰ ์„ค์ •
with gr.Accordion("๐ŸŽจ ๊ณ ๊ธ‰ ์„ค์ •", open=False):
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7.0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, value=0.85)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=1536, value=768)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="์‹œ๋“œ ๋žœ๋คํ™”")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, value=42)
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
mode.change(
fn=update_examples,
inputs=[mode],
outputs=[examples]
)
generate_button.click(
generate_fashion,
inputs=[prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
if __name__ == "__main__":
app.launch(share=True)