Spaces:
Running
Running
File size: 5,058 Bytes
69620c8 6960db5 54d0511 31c0b50 6960db5 8c89a89 69620c8 8c89a89 69620c8 8c89a89 c1bd24e 69620c8 1c71c6c c401dbb 8c89a89 6960db5 8c89a89 1c71c6c 8c89a89 69620c8 8c89a89 69620c8 4f076f3 69620c8 6960db5 69620c8 4f076f3 69620c8 1c71c6c 4b8e8f5 1c71c6c 4b8e8f5 1c71c6c 4b8e8f5 1c71c6c 4b8e8f5 c0fd987 1c71c6c 4b8e8f5 69620c8 8c89a89 69620c8 4b8e8f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ๊ธฐ๋ณธ ๋ชจ๋ธ ๋ฐ LoRA ์ค์
base_model = "black-forest-labs/FLUX.1-dev"
model_lora_repo = "Motas/Flux_Fashion_Photography_Style" # ํจ์
๋ชจ๋ธ LoRA
clothes_lora_repo = "prithivMLmods/Canopus-Clothing-Flux-LoRA" # ์๋ฅ LoRA
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
pipe.to("cuda")
MAX_SEED = 2**32-1
# ์์ ํ๋กฌํํธ ์ ์
model_examples = [
"professional fashion model wearing elegant black dress in studio lighting",
"fashion model in casual street wear, urban background",
"high fashion model in avant-garde outfit on runway"
]
clothes_examples = [
"luxurious red evening gown with detailed embroidery",
"casual denim jacket with vintage wash",
"modern minimalist white blazer with clean lines"
]
@spaces.GPU()
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
def contains_korean(text):
return any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text)
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
# ๋ชจ๋์ ๋ฐ๋ฅธ LoRA ๋ฐ ํธ๋ฆฌ๊ฑฐ์๋ ์ค์
if mode == "ํจ์
๋ชจ๋ธ ์์ฑ":
pipe.load_lora_weights(model_lora_repo)
trigger_word = "fashion photography, professional model"
else:
pipe.load_lora_weights(clothes_lora_repo)
trigger_word = "upper clothing, fashion item"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting fashion generation...")
for i in range(1, steps + 1):
if i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
progress(100, "Completed!")
return image, seed
def update_examples(mode):
if mode == "ํจ์
๋ชจ๋ธ ์์ฑ":
return gr.Examples(examples=model_examples)
else:
return gr.Examples(examples=clothes_examples)
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as app:
gr.Markdown("# ๐ญ Fashion AI Studio")
gr.Markdown("AI๋ฅผ ์ฌ์ฉํ์ฌ ํจ์
๋ชจ๋ธ๊ณผ ์๋ฅ๋ฅผ ์์ฑํด๋ณด์ธ์")
with gr.Column():
# ๋ชจ๋ ์ ํ
mode = gr.Radio(
choices=["ํจ์
๋ชจ๋ธ ์์ฑ", "ํจ์
์๋ฅ ์์ฑ"],
label="์์ฑ ๋ชจ๋",
value="ํจ์
๋ชจ๋ธ ์์ฑ"
)
# ํ๋กฌํํธ ์
๋ ฅ
prompt = gr.TextArea(
label="โ๏ธ ํจ์
์ค๋ช
(ํ๊ธ ๋๋ ์์ด)",
placeholder="ํจ์
๋ชจ๋ธ์ด๋ ์๋ฅ๋ฅผ ์ค๋ช
ํ์ธ์...",
lines=3
)
# ์์ ์น์
with gr.Column() as example_container:
examples = gr.Examples(
examples=model_examples,
inputs=prompt,
label="์์ ํ๋กฌํํธ"
)
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง
result = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง")
generate_button = gr.Button("๐ ์ด๋ฏธ์ง ์์ฑ")
# ๊ณ ๊ธ ์ค์
with gr.Accordion("๐จ ๊ณ ๊ธ ์ค์ ", open=False):
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7.0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, value=0.85)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=1536, value=768)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="์๋ ๋๋คํ")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, value=42)
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
mode.change(
fn=update_examples,
inputs=[mode],
outputs=[examples]
)
generate_button.click(
generate_fashion,
inputs=[prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
if __name__ == "__main__":
app.launch(share=True) |