PROTAC-Degradation-Predictor / src /get_studies_datasets.py
ribesstefano's picture
Fixed issue with duplicates + Experiments now rely on predefined datasets + Added experiments on simple embeddings
251060c
raw
history blame
20.3 kB
import os
import sys
from typing import Dict
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import protac_degradation_predictor as pdp
from collections import defaultdict
import warnings
import logging
from typing import Literal
from sklearn.preprocessing import OrdinalEncoder
from sklearn.model_selection import StratifiedKFold, StratifiedGroupKFold
from tqdm import tqdm
import pandas as pd
import numpy as np
import pytorch_lightning as pl
from rdkit import DataStructs
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
root.addHandler(handler)
def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
""" Get the indices of the test set using a random split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
test_split (float): The percentage of the active PROTACs to use as the test set.
Returns:
pd.Index: The indices of the test set.
"""
test_df = active_df.sample(frac=test_split, random_state=42)
return test_df.index
def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index:
""" Get the indices of the test set using the E3 ligase split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
Returns:
pd.Index: The indices of the test set.
"""
encoder = OrdinalEncoder()
active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int)
test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
return test_df.index
def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple:
""" Get the SMILES to fingerprint dictionary and the average Tanimoto similarity.
Args:
protac_df (pd.DataFrame): The DataFrame containing the PROTACs.
Returns:
tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity.
"""
unique_smiles = protac_df['Smiles'].unique().tolist()
smiles2fp = {}
for smiles in tqdm(unique_smiles, desc='Precomputing fingerprints'):
smiles2fp[smiles] = pdp.get_fingerprint(smiles)
# # Get the pair-wise tanimoto similarity between the PROTAC fingerprints
# tanimoto_matrix = defaultdict(list)
# for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
# fp1 = smiles2fp[smiles1]
# # TODO: Use BulkTanimotoSimilarity for better performance
# for j, smiles2 in enumerate(protac_df['Smiles'].unique()[i:]):
# fp2 = smiles2fp[smiles2]
# tanimoto_dist = 1 - DataStructs.TanimotoSimilarity(fp1, fp2)
# tanimoto_matrix[smiles1].append(tanimoto_dist)
# avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
# protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
tanimoto_matrix = defaultdict(list)
fps = list(smiles2fp.values())
# Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity
for i, (smiles1, fp1) in enumerate(tqdm(zip(unique_smiles, fps), desc='Computing Tanimoto similarity', total=len(fps))):
similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:]) # Only compute for i to end, avoiding duplicates
for j, similarity in enumerate(similarities):
distance = 1 - similarity
tanimoto_matrix[smiles1].append(distance) # Store as distance
if i != i + j:
tanimoto_matrix[unique_smiles[i + j]].append(distance) # Symmetric filling
# Calculate average Tanimoto distance for each unique SMILES
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
return smiles2fp, protac_df
def get_tanimoto_split_indices(
active_df: pd.DataFrame,
active_col: str,
test_split: float,
n_bins_tanimoto: int = 100, # Original: 200
) -> pd.Index:
""" Get the indices of the test set using the Tanimoto-based split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity.
Returns:
pd.Index: The indices of the test set.
"""
tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
# Sort the groups so that samples with the highest tanimoto similarity,
# i.e., the "less similar" ones, are placed in the test set first
tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_col in test_df is roughly 50%.
for group in tanimoto_groups:
group_df = active_df[active_df['Tanimoto Group'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_col].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_col].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is not over-exceeding 60%
perc_active_group = (num_active_group + num_active_test) / (num_entries_test + num_entries)
perc_inactive_group = (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries)
if perc_active_group < 0.6:
if perc_inactive_group < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
return test_df.index
def get_target_split_indices(active_df: pd.DataFrame, active_col: str, test_split: float) -> pd.Index:
""" Get the indices of the test set using the target-based split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
active_col (str): The column containing the active/inactive information.
test_split (float): The percentage of the active PROTACs to use as the test set.
Returns:
pd.Index: The indices of the test set.
"""
encoder = OrdinalEncoder()
active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int)
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_col in test_df is roughly 50%.
# Start the loop from the groups containing the smallest number of entries.
for group in reversed(active_df['Uniprot'].value_counts().index):
group_df = active_df[active_df['Uniprot'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_col].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_col].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
return test_df.index
def get_dataframe_stats(
train_df = None,
val_df = None,
test_df = None,
active_label = 'Active',
) -> Dict:
""" Get some statistics from the dataframes.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
"""
stats = {}
if train_df is not None:
stats['train_len'] = len(train_df)
stats['train_active_perc'] = train_df[active_label].sum() / len(train_df)
stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df)
stats['train_avg_tanimoto_dist'] = train_df['Avg Tanimoto'].mean()
if val_df is not None:
stats['val_len'] = len(val_df)
stats['val_active_perc'] = val_df[active_label].sum() / len(val_df)
stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df)
stats['val_avg_tanimoto_dist'] = val_df['Avg Tanimoto'].mean()
if test_df is not None:
stats['test_len'] = len(test_df)
stats['test_active_perc'] = test_df[active_label].sum() / len(test_df)
stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
stats['test_avg_tanimoto_dist'] = test_df['Avg Tanimoto'].mean()
if train_df is not None and val_df is not None:
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot)
stats['num_leaking_smiles_train_val'] = len(leaking_smiles)
stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
key_cols = [
'Smiles',
'Uniprot',
'E3 Ligase Uniprot',
'Cell Line Identifier',
]
class_cols = ['DC50 (nM)', 'Dmax (%)']
# Check if there are any entries that are in BOTH train and val sets
tmp_train_df = train_df[key_cols + class_cols].copy()
tmp_val_df = val_df[key_cols + class_cols].copy()
stats['leaking_train_val'] = len(tmp_train_df.merge(tmp_val_df, on=key_cols + class_cols, how='inner'))
if train_df is not None and test_df is not None:
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles'])))
stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot)
stats['num_leaking_smiles_train_test'] = len(leaking_smiles)
stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
key_cols = [
'Smiles',
'Uniprot',
'E3 Ligase Uniprot',
'Cell Line Identifier',
]
class_cols = ['DC50 (nM)', 'Dmax (%)']
# Check if there are any entries that are in BOTH train and test sets
tmp_train_df = train_df[key_cols + class_cols].copy()
tmp_test_df = test_df[key_cols + class_cols].copy()
stats['leaking_train_test'] = len(tmp_train_df.merge(tmp_test_df, on=key_cols + class_cols, how='inner'))
return stats
def merge_numerical_cols(group):
key_cols = [
'Smiles',
'Uniprot',
'E3 Ligase Uniprot',
'Cell Line Identifier',
]
class_cols = ['DC50 (nM)', 'Dmax (%)']
# Loop over all numerical columns
for col in group.select_dtypes(include=[np.number]).columns:
if col == 'Compound ID':
continue
# Compute the geometric mean for the column
values = group[col].dropna()
if not values.empty:
group[col] = np.prod(values) ** (1 / len(values))
row = group.drop_duplicates(subset=key_cols + class_cols).reset_index(drop=True)
assert len(row) == 1
return row
def remove_duplicates(df):
key_cols = [
'Smiles',
'Uniprot',
'E3 Ligase Uniprot',
'Cell Line Identifier',
]
class_cols = ['DC50 (nM)', 'Dmax (%)']
# Check if there are any duplicated entries having the same key columns, if
# so, merge them by applying a geometric mean to their DC50 and Dmax columns
duplicated = df[df.duplicated(subset=key_cols, keep=False)]
# NOTE: Reset index to remove the multi-index
merged = duplicated.groupby(key_cols).apply(lambda x: merge_numerical_cols(x))
merged = merged.reset_index(drop=True)
# Remove the duplicated entries from the original dataframe df
df = df[~df.duplicated(subset=key_cols, keep=False)]
# Concatenate the merged dataframe with the original dataframe
return pd.concat([df, merged], ignore_index=True)
def main(
active_col: str = 'Active (Dmax 0.6, pDC50 6.0)',
test_split: float = 0.1,
studies: str | Literal['all', 'standard', 'e3_ligase', 'similarity', 'target'] = 'all',
cv_n_splits: int = 5,
):
""" Get and save the datasets for the different studies.
Args:
active_col (str): The column containing the active/inactive information. It should be in the format 'Active (Dmax N, pDC50 M)', where N and M are the thresholds float values for Dmax and pDC50, respectively.
test_split (float): The percentage of the active PROTACs to use as the test set.
studies (str): The type of studies to save dataset for. Options: 'all', 'standard', 'e3_ligase', 'similarity', 'target'.
"""
pl.seed_everything(42)
# Set the Column to Predict
active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '')
# Get Dmax_threshold from the active_col
Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip())
pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip())
# Load the PROTAC dataset
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
# Map E3 Ligase Iap to IAP
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
# Remove duplicates
protac_df = remove_duplicates(protac_df)
# Remove legacy columns if they exist
if 'Active - OR' in protac_df.columns:
protac_df.drop(columns='Active - OR', inplace=True)
if 'Active - AND' in protac_df.columns:
protac_df.drop(columns='Active - AND', inplace=True)
if 'Active' in protac_df.columns:
protac_df.drop(columns='Active', inplace=True)
# Calculate Activity and add it as a column
protac_df[active_col] = protac_df.apply(
lambda x: pdp.is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1
)
# Precompute fingerprints and average Tanimoto similarity
_, protac_df = get_smiles2fp_and_avg_tanimoto(protac_df)
## Get the test sets
test_indeces = {}
active_df = protac_df[protac_df[active_col].notna()].copy()
if studies == 'standard' or studies == 'all':
test_indeces['standard'] = get_random_split_indices(active_df, test_split)
if studies == 'target' or studies == 'all':
test_indeces['target'] = get_target_split_indices(active_df, active_col, test_split)
if studies == 'similarity' or studies == 'all':
test_indeces['similarity'] = get_tanimoto_split_indices(active_df, active_col, test_split)
# if studies == 'e3_ligase' or studies == 'all':
# test_indeces['e3_ligase'] = get_e3_ligase_split_indices(active_df)
# Make directory for studies datasets if it does not exist
data_dir = '../data/studies'
if not os.path.exists(data_dir):
os.makedirs(data_dir)
# Open file for reporting
with open(f'{data_dir}/report_datasets.md', 'w') as f:
# Cross-Validation Training
for split_type, indeces in test_indeces.items():
test_df = active_df.loc[indeces].copy()
train_val_df = active_df[~active_df.index.isin(test_df.index)].copy()
# Print statistics on active/inactive percentages
perc_active = train_val_df[active_col].sum() / len(train_val_df)
print('-' * 80)
print(f'{split_type.capitalize()} Split')
print(f'Len Train/Val:{len(train_val_df)}')
print(f'Len Test: {len(test_df)}')
print(f'Percentage Active in Train/Val: {perc_active:.2%}')
print(f'Percentage Inactive in Train/Val: {1 - perc_active:.2%}')
# Get the CV object
if split_type == 'standard':
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = None
elif split_type == 'e3_ligase':
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['E3 Group'].to_numpy()
elif split_type == 'similarity':
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['Tanimoto Group'].to_numpy()
elif split_type == 'target':
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['Uniprot Group'].to_numpy()
# Get the folds on the train_val_df, then collect statistics on active/inactive percentages
stats = []
for i, (train_index, val_index) in enumerate(kf.split(train_val_df, train_val_df[active_col].to_list(), group)):
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
s = get_dataframe_stats(train_df, val_df, test_df, active_col)
s['fold'] = i + 1
stats.append(s)
# Append the statistics as markdown to report file f
stats_df = pd.DataFrame(stats)
f.write(f'## {split_type.capitalize()} Split\n\n')
f.write(stats_df.to_markdown(index=False))
f.write('\n\n')
print('-' * 80)
# Save the datasets
train_val_perc = f'{int((1 - test_split) * 100)}'
test_perc = f'{int(test_split * 100)}'
train_val_filename = f'{data_dir}/{split_type}_train_val_{train_val_perc}split_{active_name}.csv'
test_filename = f'{data_dir}/{split_type}_test_{test_perc}split_{active_name}.csv'
# print('')
# print(f'Saving train_val datasets as: {train_val_filename}')
# print(f'Saving test datasets as: {test_filename}')
train_val_df.to_csv(train_val_filename, index=False)
test_df.to_csv(test_filename, index=False)
if __name__ == '__main__':
main()