File size: 20,322 Bytes
ed339ed
 
251060c
ed339ed
 
 
 
 
 
 
 
 
 
251060c
ed339ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251060c
ed339ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251060c
 
 
 
 
ed339ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251060c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed339ed
 
 
 
251060c
ed339ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251060c
 
 
 
 
 
 
 
 
 
 
 
 
ed339ed
 
 
251060c
 
ed339ed
 
 
 
 
 
 
 
 
 
 
 
251060c
 
ed339ed
 
 
 
 
 
251060c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed339ed
 
251060c
ed339ed
 
 
 
 
 
251060c
 
 
ed339ed
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
import sys
from typing import Dict

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import protac_degradation_predictor as pdp

from collections import defaultdict
import warnings
import logging
from typing import Literal

from sklearn.preprocessing import OrdinalEncoder
from sklearn.model_selection import StratifiedKFold, StratifiedGroupKFold
from tqdm import tqdm
import pandas as pd
import numpy as np
import pytorch_lightning as pl
from rdkit import DataStructs


root = logging.getLogger()
root.setLevel(logging.DEBUG)

handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
root.addHandler(handler)


def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
    """ Get the indices of the test set using a random split.
    
    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
        test_split (float): The percentage of the active PROTACs to use as the test set.
    
    Returns:
        pd.Index: The indices of the test set.
    """
    test_df = active_df.sample(frac=test_split, random_state=42)
    return test_df.index


def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index:
    """ Get the indices of the test set using the E3 ligase split.
    
    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
    
    Returns:
        pd.Index: The indices of the test set.
    """
    encoder = OrdinalEncoder()
    active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int)
    test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
    return test_df.index


def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple:
    """ Get the SMILES to fingerprint dictionary and the average Tanimoto similarity.
    
    Args:
        protac_df (pd.DataFrame): The DataFrame containing the PROTACs.
    
    Returns:
        tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity.
    """
    unique_smiles = protac_df['Smiles'].unique().tolist()

    smiles2fp = {}
    for smiles in tqdm(unique_smiles, desc='Precomputing fingerprints'):
        smiles2fp[smiles] = pdp.get_fingerprint(smiles)

    # # Get the pair-wise tanimoto similarity between the PROTAC fingerprints
    # tanimoto_matrix = defaultdict(list)
    # for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
    #     fp1 = smiles2fp[smiles1]
    #     # TODO: Use BulkTanimotoSimilarity for better performance
    #     for j, smiles2 in enumerate(protac_df['Smiles'].unique()[i:]):
    #         fp2 = smiles2fp[smiles2]
    #         tanimoto_dist = 1 - DataStructs.TanimotoSimilarity(fp1, fp2)
    #         tanimoto_matrix[smiles1].append(tanimoto_dist)
    # avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
    # protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)


    tanimoto_matrix = defaultdict(list)
    fps = list(smiles2fp.values())

    # Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity
    for i, (smiles1, fp1) in enumerate(tqdm(zip(unique_smiles, fps), desc='Computing Tanimoto similarity', total=len(fps))):
        similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:])  # Only compute for i to end, avoiding duplicates
        for j, similarity in enumerate(similarities):
            distance = 1 - similarity
            tanimoto_matrix[smiles1].append(distance)  # Store as distance
            if i != i + j:
                tanimoto_matrix[unique_smiles[i + j]].append(distance)  # Symmetric filling

    # Calculate average Tanimoto distance for each unique SMILES
    avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
    protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)

    smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}

    return smiles2fp, protac_df


def get_tanimoto_split_indices(
        active_df: pd.DataFrame,
        active_col: str,
        test_split: float,
        n_bins_tanimoto: int = 100, # Original: 200
) -> pd.Index:
    """ Get the indices of the test set using the Tanimoto-based split.
    
    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
        n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity.
    
    Returns:
        pd.Index: The indices of the test set.
    """
    tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
    encoder = OrdinalEncoder()
    active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
    # Sort the groups so that samples with the highest tanimoto similarity,
    # i.e., the "less similar" ones, are placed in the test set first
    tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index

    test_df = []
    # For each group, get the number of active and inactive entries. Then, add those
    # entries to the test_df if: 1) the test_df lenght + the group entries is less
    # 20% of the active_df lenght, and 2) the percentage of True and False entries
    # in the active_col in test_df is roughly 50%.
    for group in tanimoto_groups:
        group_df = active_df[active_df['Tanimoto Group'] == group]
        if test_df == []:
            test_df.append(group_df)
            continue
        
        num_entries = len(group_df)
        num_active_group = group_df[active_col].sum()
        num_inactive_group = num_entries - num_active_group

        tmp_test_df = pd.concat(test_df)
        num_entries_test = len(tmp_test_df)
        num_active_test = tmp_test_df[active_col].sum()
        num_inactive_test = num_entries_test - num_active_test
        
        # Check if the group entries can be added to the test_df
        if num_entries_test + num_entries < test_split * len(active_df):
            # Add anything at the beggining
            if num_entries_test + num_entries < test_split / 2 * len(active_df):
                test_df.append(group_df)
                continue
            # Be more selective and make sure that the percentage of active and
            # inactive is not over-exceeding 60%
            perc_active_group = (num_active_group + num_active_test) / (num_entries_test + num_entries)
            perc_inactive_group = (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries)
            if perc_active_group < 0.6:
                if perc_inactive_group < 0.6:
                    test_df.append(group_df)
    test_df = pd.concat(test_df)
    return test_df.index


def get_target_split_indices(active_df: pd.DataFrame, active_col: str, test_split: float) -> pd.Index:
    """ Get the indices of the test set using the target-based split.

    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
        active_col (str): The column containing the active/inactive information.
        test_split (float): The percentage of the active PROTACs to use as the test set.

    Returns:
        pd.Index: The indices of the test set.
    """
    encoder = OrdinalEncoder()
    active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int)

    test_df = []
    # For each group, get the number of active and inactive entries. Then, add those
    # entries to the test_df if: 1) the test_df lenght + the group entries is less
    # 20% of the active_df lenght, and 2) the percentage of True and False entries
    # in the active_col in test_df is roughly 50%.
    # Start the loop from the groups containing the smallest number of entries.
    for group in reversed(active_df['Uniprot'].value_counts().index):
        group_df = active_df[active_df['Uniprot'] == group]
        if test_df == []:
            test_df.append(group_df)
            continue
        
        num_entries = len(group_df)
        num_active_group = group_df[active_col].sum()
        num_inactive_group = num_entries - num_active_group

        tmp_test_df = pd.concat(test_df)
        num_entries_test = len(tmp_test_df)
        num_active_test = tmp_test_df[active_col].sum()
        num_inactive_test = num_entries_test - num_active_test
        
        # Check if the group entries can be added to the test_df
        if num_entries_test + num_entries < test_split * len(active_df):
            # Add anything at the beggining
            if num_entries_test + num_entries < test_split / 2 * len(active_df):
                test_df.append(group_df)
                continue
            # Be more selective and make sure that the percentage of active and
            # inactive is balanced
            if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
                if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
                    test_df.append(group_df)
    test_df = pd.concat(test_df)
    return test_df.index


def get_dataframe_stats(
        train_df = None,
        val_df = None,
        test_df = None,
        active_label = 'Active',
    ) -> Dict:
    """ Get some statistics from the dataframes.
    
    Args:
        train_df (pd.DataFrame): The training set.
        val_df (pd.DataFrame): The validation set.
        test_df (pd.DataFrame): The test set.
    """
    stats = {}
    if train_df is not None:
        stats['train_len'] = len(train_df)
        stats['train_active_perc'] = train_df[active_label].sum() / len(train_df)
        stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df)
        stats['train_avg_tanimoto_dist'] = train_df['Avg Tanimoto'].mean()
    if val_df is not None:
        stats['val_len'] = len(val_df)
        stats['val_active_perc'] = val_df[active_label].sum() / len(val_df)
        stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df)
        stats['val_avg_tanimoto_dist'] = val_df['Avg Tanimoto'].mean()
    if test_df is not None:
        stats['test_len'] = len(test_df)
        stats['test_active_perc'] = test_df[active_label].sum() / len(test_df)
        stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
        stats['test_avg_tanimoto_dist'] = test_df['Avg Tanimoto'].mean()
    if train_df is not None and val_df is not None:
        leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
        leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
        stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot)
        stats['num_leaking_smiles_train_val'] = len(leaking_smiles)
        stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
        stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
        
        key_cols = [
            'Smiles',
            'Uniprot',
            'E3 Ligase Uniprot',
            'Cell Line Identifier',
        ]
        class_cols = ['DC50 (nM)', 'Dmax (%)']
        # Check if there are any entries that are in BOTH train and val sets
        tmp_train_df = train_df[key_cols + class_cols].copy()
        tmp_val_df = val_df[key_cols + class_cols].copy()
        stats['leaking_train_val'] = len(tmp_train_df.merge(tmp_val_df, on=key_cols + class_cols, how='inner'))


    if train_df is not None and test_df is not None:
        leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot'])))
        leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles'])))
        stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot)
        stats['num_leaking_smiles_train_test'] = len(leaking_smiles)
        stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
        stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)

        key_cols = [
            'Smiles',
            'Uniprot',
            'E3 Ligase Uniprot',
            'Cell Line Identifier',
        ]
        class_cols = ['DC50 (nM)', 'Dmax (%)']
        # Check if there are any entries that are in BOTH train and test sets
        tmp_train_df = train_df[key_cols + class_cols].copy()
        tmp_test_df = test_df[key_cols + class_cols].copy()
        stats['leaking_train_test'] = len(tmp_train_df.merge(tmp_test_df, on=key_cols + class_cols, how='inner'))

    return stats


def merge_numerical_cols(group):
    key_cols = [
        'Smiles',
        'Uniprot',
        'E3 Ligase Uniprot',
        'Cell Line Identifier',
    ]
    class_cols = ['DC50 (nM)', 'Dmax (%)']
    # Loop over all numerical columns
    for col in group.select_dtypes(include=[np.number]).columns:
        if col == 'Compound ID':
            continue
        # Compute the geometric mean for the column
        values = group[col].dropna()
        if not values.empty:
            group[col] = np.prod(values) ** (1 / len(values))

    row = group.drop_duplicates(subset=key_cols + class_cols).reset_index(drop=True)

    assert len(row) == 1

    return row


def remove_duplicates(df):
    key_cols = [
        'Smiles',
        'Uniprot',
        'E3 Ligase Uniprot',
        'Cell Line Identifier',
    ]
    class_cols = ['DC50 (nM)', 'Dmax (%)']
    # Check if there are any duplicated entries having the same key columns, if
    # so, merge them by applying a geometric mean to their DC50 and Dmax columns
    duplicated = df[df.duplicated(subset=key_cols, keep=False)]

    # NOTE: Reset index to remove the multi-index
    merged = duplicated.groupby(key_cols).apply(lambda x: merge_numerical_cols(x))
    merged = merged.reset_index(drop=True)

    # Remove the duplicated entries from the original dataframe df
    df = df[~df.duplicated(subset=key_cols, keep=False)]
    # Concatenate the merged dataframe with the original dataframe
    return pd.concat([df, merged], ignore_index=True)


def main(
    active_col: str = 'Active (Dmax 0.6, pDC50 6.0)',
    test_split: float = 0.1,
    studies: str | Literal['all', 'standard', 'e3_ligase', 'similarity', 'target'] = 'all',
    cv_n_splits: int = 5,
):
    """ Get and save the datasets for the different studies.
    
    Args:
        active_col (str): The column containing the active/inactive information. It should be in the format 'Active (Dmax N, pDC50 M)', where N and M are the thresholds float values for Dmax and pDC50, respectively.
        test_split (float): The percentage of the active PROTACs to use as the test set.
        studies (str): The type of studies to save dataset for. Options: 'all', 'standard', 'e3_ligase', 'similarity', 'target'.
    """
    pl.seed_everything(42)

    # Set the Column to Predict
    active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '')

    # Get Dmax_threshold from the active_col
    Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip())
    pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip())

    # Load the PROTAC dataset
    protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
    # Map E3 Ligase Iap to IAP
    protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')

    # Remove duplicates
    protac_df = remove_duplicates(protac_df)

    # Remove legacy columns if they exist
    if 'Active - OR' in protac_df.columns:
        protac_df.drop(columns='Active - OR', inplace=True)
    if 'Active - AND' in protac_df.columns:
        protac_df.drop(columns='Active - AND', inplace=True)
    if 'Active' in protac_df.columns:
        protac_df.drop(columns='Active', inplace=True)
    
    # Calculate Activity and add it as a column
    protac_df[active_col] = protac_df.apply(
        lambda x: pdp.is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1
    )

    # Precompute fingerprints and average Tanimoto similarity
    _, protac_df = get_smiles2fp_and_avg_tanimoto(protac_df)

    ## Get the test sets
    test_indeces = {}
    active_df = protac_df[protac_df[active_col].notna()].copy()

    if studies == 'standard' or studies == 'all':
        test_indeces['standard'] = get_random_split_indices(active_df, test_split)
    if studies == 'target' or studies == 'all':
        test_indeces['target'] = get_target_split_indices(active_df, active_col, test_split)
    if studies == 'similarity' or studies == 'all':
        test_indeces['similarity'] = get_tanimoto_split_indices(active_df, active_col, test_split)
    # if studies == 'e3_ligase' or studies == 'all':
    #     test_indeces['e3_ligase'] = get_e3_ligase_split_indices(active_df)

    # Make directory for studies datasets if it does not exist
    data_dir = '../data/studies'
    if not os.path.exists(data_dir):
        os.makedirs(data_dir)

    # Open file for reporting
    with open(f'{data_dir}/report_datasets.md', 'w') as f:
        # Cross-Validation Training
        for split_type, indeces in test_indeces.items():
            test_df = active_df.loc[indeces].copy()
            train_val_df = active_df[~active_df.index.isin(test_df.index)].copy()

            # Print statistics on active/inactive percentages
            perc_active = train_val_df[active_col].sum() / len(train_val_df)
            print('-' * 80)
            print(f'{split_type.capitalize()} Split')
            print(f'Len Train/Val:{len(train_val_df)}')
            print(f'Len Test: {len(test_df)}')
            print(f'Percentage Active in Train/Val: {perc_active:.2%}')
            print(f'Percentage Inactive in Train/Val: {1 - perc_active:.2%}')

            # Get the CV object
            if split_type == 'standard':
                kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
                group = None
            elif split_type == 'e3_ligase':
                kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
                group = train_val_df['E3 Group'].to_numpy()
            elif split_type == 'similarity':
                kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
                group = train_val_df['Tanimoto Group'].to_numpy()
            elif split_type == 'target':
                kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
                group = train_val_df['Uniprot Group'].to_numpy()
            
            # Get the folds on the train_val_df, then collect statistics on active/inactive percentages
            stats = []
            for i, (train_index, val_index) in enumerate(kf.split(train_val_df, train_val_df[active_col].to_list(), group)):
                train_df = train_val_df.iloc[train_index]
                val_df = train_val_df.iloc[val_index]

                s = get_dataframe_stats(train_df, val_df, test_df, active_col)
                s['fold'] = i + 1
                stats.append(s)
            
            # Append the statistics as markdown to report file f
            stats_df = pd.DataFrame(stats)
            f.write(f'## {split_type.capitalize()} Split\n\n')
            f.write(stats_df.to_markdown(index=False))
            f.write('\n\n')
            print('-' * 80)



        # Save the datasets
        train_val_perc = f'{int((1 - test_split) * 100)}'
        test_perc = f'{int(test_split * 100)}'

        train_val_filename = f'{data_dir}/{split_type}_train_val_{train_val_perc}split_{active_name}.csv'
        test_filename = f'{data_dir}/{split_type}_test_{test_perc}split_{active_name}.csv'

        # print('')
        # print(f'Saving train_val datasets as: {train_val_filename}')
        # print(f'Saving test datasets as:      {test_filename}')

        train_val_df.to_csv(train_val_filename, index=False)
        test_df.to_csv(test_filename, index=False)


if __name__ == '__main__':
    main()