File size: 4,854 Bytes
d4cd645 c630634 6a5a99e d4cd645 01e1181 d4cd645 6a5a99e f3d4b52 6a5a99e f3d4b52 d4cd645 f3d4b52 c5b5a7f f3d4b52 42d3d55 6a5a99e 42d3d55 6a5a99e 42d3d55 f3d4b52 6a5a99e 5c5788c d4cd645 f3d4b52 6a5a99e d4cd645 6a5a99e f3d4b52 42d3d55 d4cd645 42d3d55 5452b6b d4cd645 a866f26 42d3d55 d4cd645 74a86c6 5452b6b 42d3d55 9bae2da f3d4b52 74a86c6 5c5788c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |

<a href="https://colab.research.google.com/github/ribesstefano/PROTAC-Degradation-Predictor/blob/main/notebooks/protac_degradation_predictor_tutorial.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
[](https://huggingface.co/spaces/ailab-bio/PROTAC-Degradation-Predictor)
# PROTAC-Degradation-Predictor
A machine learning-based tool for predicting PROTAC protein degradation activity.
## π Table of Contents
- [Data Curation](#-data-curation)
- [Installation](#-installation)
- [Usage](#-usage)
- [Training](#-training)
- [Citation](#-citation)
- [License](#-license)
## π Data Curation
The code for data curation can be found in the Jupyter notebook [`data_curation.ipynb`](notebooks/data_curation.ipynb).
The folder [data/studies](data/studies/) contains the training and test data used in each study reported in our paper. The label column that is used for predictions is named _"Active (Dmax 0.6, pDC50 6.0)"_ and contains binary values.
## π Installation
To install the package, open your terminal and run the following commands:
```bash
git clone https://github.com/ribesstefano/PROTAC-Degradation-Predictor.git
cd PROTAC-Degradation-Predictor
pip install .
```
The package has been developed on a Linux machine with Python 3.10.8. It is recommended to use a virtual environment to avoid conflicts with other packages.
## π― Usage
For a thorough explanation on how to use the package, please refer to the tutorial notebook [`protac_degradation_predictor_tutorial.ipynb`](notebooks/protac_degradation_predictor_tutorial.ipynb).
After installing the package, you can use it as follows:
```python
import protac_degradation_predictor as pdp
protac_smiles = 'Cc1ncsc1-c1ccc(CNC(=O)[C@@H]2C[C@@H](O)CN2C(=O)[C@@H](NC(=O)COCCCCCCCCCOCC(=O)Nc2ccc(C(=O)Nc3ccc(F)cc3N)cc2)C(C)(C)C)cc1'
e3_ligase = 'VHL'
target_uniprot = 'P04637'
cell_line = 'HeLa'
active_protac = pdp.is_protac_active(
protac_smiles,
e3_ligase,
target_uniprot,
cell_line,
)
print(f'The given PROTAC is: {"active" if active_protac else "inactive"}')
```
This example demonstrates how to predict the activity of a PROTAC molecule. The `is_protac_active` function takes the SMILES string of the PROTAC, the E3 ligase, the UniProt ID of the target protein, and the cell line as inputs. It returns whether the PROTAC is active or not.
The function supports batch computation by passing lists of SMILES strings, E3 ligases, UniProt IDs, and cell lines. In this case, it returns a list of booleans indicating the activity of each PROTAC.
## π Training
Before running the experiments reported in our work or train on your custom dataset, here are some required steps to follow (assuming one is in the repository directory already):
1. Download the data from the [Cellosaurus database](https://web.expasy.org/cellosaurus/) and save it in the `data` directory:
```bash
wget https://ftp.expasy.org/databases/cellosaurus/cellosaurus.txt data/
```
2. Make a copy of the Uniprot embeddings to be placed in the `data` directory:
```bash
cp protac_degradation_predictor/data/uniprot2embedding.h5 data/
```
3. Create a virtual environment and install the required packages by running the following commands:
```bash
conda env create -f environment.yaml
conda activate protac-degradation-predictor
```
4. The code for training the PyTorch models can be found in the file [`run_experiments_pytorch.py`](src/run_experiments_pytorch.py).
(Don't forget to adjust the `PYTHONPATH` environment variable to include the repository directory: `export PYTHONPATH=$PYTHONPATH:/path/to/PROTAC-Degradation-Predictor`)
### Training on Custom Dataset
For training a model on a user-provided dataset, please refer to the guide reported in [this README](src/README.md).
## π Citation
If you use this tool in your research, please cite the following paper:
```
@misc{ribes2024modeling,
title={Modeling PROTAC Degradation Activity with Machine Learning},
author={Stefano Ribes and Eva Nittinger and Christian Tyrchan and RocΓo Mercado},
year={2024},
eprint={2406.02637},
archivePrefix={arXiv},
primaryClass={q-bio.QM}
}
```
The directories [logs](logs/) and [reports](reports/) contain the logs and reports generated during the experiments reported in the paper. Additionally, in [reports](reports/), one can find the pickled Optuna studies for the reported experiments.
The directory [models](models/) contains the trained models for the experiments reported in the paper.
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|