File size: 3,648 Bytes
e34aefe
 
c4c15bc
b784e4c
e34aefe
a96c800
b827155
 
 
a96c800
 
 
 
 
 
 
 
 
 
 
 
 
 
b784e4c
a96c800
 
 
 
 
 
b784e4c
a96c800
 
 
 
 
 
 
 
 
 
 
b784e4c
e34aefe
a96c800
 
 
 
 
 
 
e34aefe
a96c800
b784e4c
 
 
 
 
 
 
 
a96c800
2fe25b6
a96c800
b784e4c
 
 
e34aefe
 
 
34aba6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from transformers import pipeline
import numpy as np
import os

# Initialize classifiers with appropriate Chinese models
accuracy_classifier = pipeline(task="audio-classification", model="JohnJumon/pronunciation_accuracy")
fluency_classifier = pipeline(task="audio-classification", model="JohnJumon/fluency_accuracy")
prosodic_classifier = pipeline(task="audio-classification", model="JohnJumon/prosodic_accuracy")

def chinese_pronunciation_scoring(audio):
    accuracy_description = {
        'Extremely Poor': 'Extremely poor pronunciation and only one or two words are recognizable',
        'Poor': 'Poor, clumsy and rigid pronunciation of the sentence as a whole, with serious pronunciation mistakes',
        'Average': 'The overall pronunciation of the sentence is understandable, with many pronunciation mistakes and accent, but it does not affect the understanding of basic meanings',
        'Good': 'The overall pronunciation of the sentence is good, with a few pronunciation mistakes',
        'Excellent': 'The overall pronunciation of the sentence is excellent, with accurate phonology and no obvious pronunciation mistakes'
    }
    fluency_description = {
        'Very Influent': 'Intermittent, very influent speech, with lots of pauses, repetition, and stammering',
        'Influent': 'The speech is a little influent, with many pauses, repetition, and stammering',
        'Average': 'Fluent in general, with a few pauses, repetition, and stammering',
        'Fluent': 'Fluent without noticeable pauses or stammering'
    }
    prosodic_description = {
        'Poor': 'Poor intonation and lots of stammering and pauses, unable to read a complete sentence',
        'Unstable': 'Unstable speech speed, speak too fast or too slow, without the sense of rhythm',
        'Stable': 'Unstable speech speed, many stammering and pauses with a poor sense of rhythm',
        'Almost': 'Nearly correct intonation at a stable speaking speed, nearly smooth and coherent, but with little stammering and few pauses',
        'Perfect': 'Correct intonation at a stable speaking speed, speak with cadence, and can speak like a native'
    }

    # Run classifiers on the input audio
    accuracy = accuracy_classifier(audio)
    fluency = fluency_classifier(audio)
    prosodic = prosodic_classifier(audio)

    # Process results
    result = {
        'accuracy': accuracy,
        'fluency': fluency,
        'prosodic': prosodic
    }

    for category, scores in result.items():
        max_score_label = max(scores, key=lambda x: x['score'])['label']
        result[category] = max_score_label

    return result['accuracy'], accuracy_description[result['accuracy']], result['fluency'], fluency_description[result['fluency']], result['prosodic'], prosodic_description[result['prosodic']]

# Setting up the Gradio interface
gradio_app = gr.Interface(
    chinese_pronunciation_scoring,
    inputs=gr.Audio(sources="microphone", type="filepath"),
    outputs=[
        gr.Label(label="Accuracy Result"),
        gr.Textbox(interactive=False, show_label=False),
        gr.Label(label="Fluency Result"),
        gr.Textbox(interactive=False, show_label=False),
        gr.Label(label="Prosodic Result"),
        gr.Textbox(interactive=False, show_label=False)
    ],
    title="Trying to make a Chinese Pronunciation Scoring app like the one by JohnJumon for English",
    description="This app will score your Chinese pronunciation accuracy, fluency, and prosodic (intonation)",
    examples=[
        [os.path.join(os.path.dirname(__file__),"audio.wav")],
    ]
)

if __name__ == "__main__":
    gradio_app.launch()