Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
accuracy_pipeline = pipeline(task="audio-classification", model="JohnJumon/pronunciation_accuracy")
|
5 |
+
fluency_pipeline = pipeline(task="audio-classification", model="JohnJumon/fluency_accuracy")
|
6 |
+
prosodic_pipeline = pipeline(task="audio-classification", model="JohnJumon/prosodic_accuracy")
|
7 |
+
|
8 |
+
def pronunciation_scoring(audio):
|
9 |
+
accuracy = accuracy_classifier(audio)
|
10 |
+
fluency = fluency_classifier(audio)
|
11 |
+
prosodic = prosodic_classifier(audio)
|
12 |
+
result = {
|
13 |
+
'accuracy': accuracy,
|
14 |
+
'fluency': fluency,
|
15 |
+
'prosodic': prosodic
|
16 |
+
}
|
17 |
+
for category, scores in result.items():
|
18 |
+
max_score_label = max(scores, key=lambda x: x['score'])['label']
|
19 |
+
result[category] = max_score_label
|
20 |
+
return result
|
21 |
+
|
22 |
+
gradio_app = gr.Interface(
|
23 |
+
pronunciation_scoring,
|
24 |
+
inputs=gr.Audio(sources=["microphone"]),
|
25 |
+
outputs=gr.Label(label="Result"),
|
26 |
+
title="Pronunciation Scoring",
|
27 |
+
)
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
gradio_app.launch()
|