ruslanmv commited on
Commit
9b81770
·
verified ·
1 Parent(s): 080f4a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -40
app.py CHANGED
@@ -1,15 +1,14 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- from transformers import AutoTokenizer
4
 
5
- # Tokenizer and model client
6
  tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
- # Define a maximum context length (tokens). Adjust based on your model's limits
10
- MAX_CONTEXT_LENGTH = 4096
11
 
12
- # Default system prompt
13
  default_nvc_prompt_template = r"""<|system|>You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help users translate their stories or judgments into feelings and needs, and work together to identify a clear request. Follow these steps:
14
  1. **Goal of the Conversation**
15
  - Translate the user’s story or judgments into feelings and needs.
@@ -82,8 +81,13 @@ def count_tokens(text: str) -> int:
82
  return len(tokenizer.encode(text))
83
 
84
  def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
85
- """
86
- Truncates the conversation history to fit within the maximum token limit.
 
 
 
 
 
87
  """
88
  truncated_history = []
89
  system_message_tokens = count_tokens(system_message)
@@ -106,66 +110,65 @@ def truncate_history(history: list[tuple[str, str]], system_message: str, max_le
106
  def respond(
107
  message,
108
  history: list[tuple[str, str]],
109
- system_message,
110
  max_tokens,
111
  temperature,
112
  top_p,
113
  ):
114
- """
115
- Responds to a user message, maintaining conversation history.
116
- """
117
 
118
- # Reset memory if user types "clear memory"
119
- if message.lower() == "clear memory":
120
- return "", []
121
 
122
- # Truncate past conversation to fit within the model's context window
123
- truncated_history = truncate_history(history, system_message, MAX_CONTEXT_LENGTH - max_tokens - 100)
124
 
125
- # Construct the messages for the chat model
126
- messages = [{"role": "system", "content": system_message}]
127
  for user_msg, assistant_msg in truncated_history:
128
  if user_msg:
129
- messages.append({"role": "user", "content": user_msg})
130
  if assistant_msg:
131
- messages.append({"role": "assistant", "content": assistant_msg})
132
 
133
- # Add the latest user query
134
- messages.append({"role": "user", "content": message})
135
 
136
  response = ""
137
  try:
138
- # Stream the response tokens
139
- for chunk in client.chat_completion(
140
- messages,
141
- max_tokens=max_tokens,
142
- stream=True,
143
- temperature=temperature,
144
- top_p=top_p,
145
- ):
146
- # Extract the token from the streaming chunk
147
- token = chunk.choices[0].delta.content
148
- response += token
149
- yield response
150
  except Exception as e:
151
- print(f"An error occurred: {e}")
152
- yield "I'm sorry, I encountered an error. Please try again."
153
 
154
  # --- Gradio Interface ---
155
  demo = gr.ChatInterface(
156
- fn=respond,
157
  additional_inputs=[
158
  gr.Textbox(
159
  value=default_nvc_prompt_template,
160
  label="System message",
161
  visible=True,
162
- lines=10,
163
  ),
164
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
165
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
166
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
167
  ],
168
  )
169
 
170
  if __name__ == "__main__":
171
- demo.launch(share=True)
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer # Import the tokenizer
4
 
5
+ # Import the tokenizer
6
  tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ # Define a maximum context length (tokens). Check your model's documentation!
10
+ MAX_CONTEXT_LENGTH = 4096 # Example: Adjust this based on your model!
11
 
 
12
  default_nvc_prompt_template = r"""<|system|>You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help users translate their stories or judgments into feelings and needs, and work together to identify a clear request. Follow these steps:
13
  1. **Goal of the Conversation**
14
  - Translate the user’s story or judgments into feelings and needs.
 
81
  return len(tokenizer.encode(text))
82
 
83
  def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
84
+ """Truncates the conversation history to fit within the maximum token limit.
85
+ Args:
86
+ history: The conversation history (list of user/assistant tuples).
87
+ system_message: The system message.
88
+ max_length: The maximum number of tokens allowed.
89
+ Returns:
90
+ The truncated history.
91
  """
92
  truncated_history = []
93
  system_message_tokens = count_tokens(system_message)
 
110
  def respond(
111
  message,
112
  history: list[tuple[str, str]],
113
+ system_message, # System message is now an argument
114
  max_tokens,
115
  temperature,
116
  top_p,
117
  ):
118
+ """Responds to a user message, maintaining conversation history, using special tokens and message list."""
 
 
119
 
120
+ if message.lower() == "clear memory": # Check for the clear memory command
121
+ return "", [] # Return empty message and empty history to reset the chat
 
122
 
123
+ formatted_system_message = system_message # Use the system_message argument
124
+ truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100) # Reserve space for the new message and some generation
125
 
126
+ messages = [{"role": "system", "content": formatted_system_message}] # Start with system message as before
 
127
  for user_msg, assistant_msg in truncated_history:
128
  if user_msg:
129
+ messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"}) # Format history user message
130
  if assistant_msg:
131
+ messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"}) # Format history assistant message
132
 
133
+ messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"}) # Format current user message
 
134
 
135
  response = ""
136
  try:
137
+ for chunk in client.chat_completion(
138
+ messages, # Send the messages list again, but with formatted content
139
+ max_tokens=max_tokens,
140
+ stream=True,
141
+ temperature=temperature,
142
+ top_p=top_p,
143
+ ):
144
+ token = chunk.choices[0].delta.content
145
+ response += token
146
+ yield response
 
 
147
  except Exception as e:
148
+ print(f"An error occurred: {e}") # It's a good practice add a try-except block
149
+ yield "I'm sorry, I encountered an error. Please try again."
150
 
151
  # --- Gradio Interface ---
152
  demo = gr.ChatInterface(
153
+ respond,
154
  additional_inputs=[
155
  gr.Textbox(
156
  value=default_nvc_prompt_template,
157
  label="System message",
158
  visible=True,
159
+ lines=10, # Increased height for more space to read the prompt
160
  ),
161
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
162
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
163
+ gr.Slider(
164
+ minimum=0.1,
165
+ maximum=1.0,
166
+ value=0.95,
167
+ step=0.05,
168
+ label="Top-p (nucleus sampling)",
169
+ ),
170
  ],
171
  )
172
 
173
  if __name__ == "__main__":
174
+ demo.launch(share=True)