Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from transformers import AutoTokenizer
|
4 |
|
5 |
-
#
|
6 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
# Define a maximum context length (tokens).
|
10 |
-
MAX_CONTEXT_LENGTH = 4096
|
11 |
|
|
|
12 |
default_nvc_prompt_template = r"""<|system|>You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help users translate their stories or judgments into feelings and needs, and work together to identify a clear request. Follow these steps:
|
13 |
1. **Goal of the Conversation**
|
14 |
- Translate the user’s story or judgments into feelings and needs.
|
@@ -81,13 +82,8 @@ def count_tokens(text: str) -> int:
|
|
81 |
return len(tokenizer.encode(text))
|
82 |
|
83 |
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
|
84 |
-
"""
|
85 |
-
|
86 |
-
history: The conversation history (list of user/assistant tuples).
|
87 |
-
system_message: The system message.
|
88 |
-
max_length: The maximum number of tokens allowed.
|
89 |
-
Returns:
|
90 |
-
The truncated history.
|
91 |
"""
|
92 |
truncated_history = []
|
93 |
system_message_tokens = count_tokens(system_message)
|
@@ -110,63 +106,64 @@ def truncate_history(history: list[tuple[str, str]], system_message: str, max_le
|
|
110 |
def respond(
|
111 |
message,
|
112 |
history: list[tuple[str, str]],
|
113 |
-
system_message,
|
114 |
max_tokens,
|
115 |
temperature,
|
116 |
top_p,
|
117 |
):
|
118 |
-
"""
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|
|
|
122 |
|
123 |
-
|
124 |
-
truncated_history = truncate_history(history,
|
125 |
|
126 |
-
|
|
|
127 |
for user_msg, assistant_msg in truncated_history:
|
128 |
if user_msg:
|
129 |
-
messages.append({"role": "user", "content": user_msg})
|
130 |
if assistant_msg:
|
131 |
-
messages.append({"role": "assistant", "content":
|
132 |
|
133 |
-
|
|
|
134 |
|
135 |
response = ""
|
136 |
try:
|
|
|
137 |
for chunk in client.chat_completion(
|
138 |
-
messages,
|
139 |
max_tokens=max_tokens,
|
140 |
stream=True,
|
141 |
temperature=temperature,
|
142 |
top_p=top_p,
|
143 |
):
|
|
|
144 |
token = chunk.choices[0].delta.content
|
145 |
response += token
|
146 |
yield response
|
147 |
except Exception as e:
|
148 |
-
print(f"An error occurred: {e}")
|
149 |
yield "I'm sorry, I encountered an error. Please try again."
|
150 |
|
151 |
# --- Gradio Interface ---
|
152 |
demo = gr.ChatInterface(
|
153 |
-
respond,
|
154 |
additional_inputs=[
|
155 |
gr.Textbox(
|
156 |
value=default_nvc_prompt_template,
|
157 |
label="System message",
|
158 |
visible=True,
|
159 |
-
lines=10,
|
160 |
),
|
161 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
162 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
163 |
-
gr.Slider(
|
164 |
-
minimum=0.1,
|
165 |
-
maximum=1.0,
|
166 |
-
value=0.95,
|
167 |
-
step=0.05,
|
168 |
-
label="Top-p (nucleus sampling)",
|
169 |
-
),
|
170 |
],
|
171 |
)
|
172 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoTokenizer
|
4 |
|
5 |
+
# Tokenizer and model client
|
6 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Define a maximum context length (tokens). Adjust based on your model's limits
|
10 |
+
MAX_CONTEXT_LENGTH = 4096
|
11 |
|
12 |
+
# Default system prompt
|
13 |
default_nvc_prompt_template = r"""<|system|>You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help users translate their stories or judgments into feelings and needs, and work together to identify a clear request. Follow these steps:
|
14 |
1. **Goal of the Conversation**
|
15 |
- Translate the user’s story or judgments into feelings and needs.
|
|
|
82 |
return len(tokenizer.encode(text))
|
83 |
|
84 |
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
|
85 |
+
"""
|
86 |
+
Truncates the conversation history to fit within the maximum token limit.
|
|
|
|
|
|
|
|
|
|
|
87 |
"""
|
88 |
truncated_history = []
|
89 |
system_message_tokens = count_tokens(system_message)
|
|
|
106 |
def respond(
|
107 |
message,
|
108 |
history: list[tuple[str, str]],
|
109 |
+
system_message,
|
110 |
max_tokens,
|
111 |
temperature,
|
112 |
top_p,
|
113 |
):
|
114 |
+
"""
|
115 |
+
Responds to a user message, maintaining conversation history.
|
116 |
+
"""
|
117 |
|
118 |
+
# Reset memory if user types "clear memory"
|
119 |
+
if message.lower() == "clear memory":
|
120 |
+
return "", []
|
121 |
|
122 |
+
# Truncate past conversation to fit within the model's context window
|
123 |
+
truncated_history = truncate_history(history, system_message, MAX_CONTEXT_LENGTH - max_tokens - 100)
|
124 |
|
125 |
+
# Construct the messages for the chat model
|
126 |
+
messages = [{"role": "system", "content": system_message}]
|
127 |
for user_msg, assistant_msg in truncated_history:
|
128 |
if user_msg:
|
129 |
+
messages.append({"role": "user", "content": user_msg})
|
130 |
if assistant_msg:
|
131 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
132 |
|
133 |
+
# Add the latest user query
|
134 |
+
messages.append({"role": "user", "content": message})
|
135 |
|
136 |
response = ""
|
137 |
try:
|
138 |
+
# Stream the response tokens
|
139 |
for chunk in client.chat_completion(
|
140 |
+
messages,
|
141 |
max_tokens=max_tokens,
|
142 |
stream=True,
|
143 |
temperature=temperature,
|
144 |
top_p=top_p,
|
145 |
):
|
146 |
+
# Extract the token from the streaming chunk
|
147 |
token = chunk.choices[0].delta.content
|
148 |
response += token
|
149 |
yield response
|
150 |
except Exception as e:
|
151 |
+
print(f"An error occurred: {e}")
|
152 |
yield "I'm sorry, I encountered an error. Please try again."
|
153 |
|
154 |
# --- Gradio Interface ---
|
155 |
demo = gr.ChatInterface(
|
156 |
+
fn=respond,
|
157 |
additional_inputs=[
|
158 |
gr.Textbox(
|
159 |
value=default_nvc_prompt_template,
|
160 |
label="System message",
|
161 |
visible=True,
|
162 |
+
lines=10,
|
163 |
),
|
164 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
165 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
166 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
],
|
168 |
)
|
169 |
|